|
| Scalar | coeff (Index row, Index col) const |
| |
| Scalar & | coeffRef (Index row, Index col) |
| |
| template<typename Other> |
| void | copyCoeff (Index row, Index col, Other &other) |
| |
| Derived & | derived () |
| |
| const Derived & | derived () const |
| |
| EigenvaluesReturnType | eigenvalues () const |
| | Computes the eigenvalues of a matrix.
|
| |
| template<typename DenseDerived> |
| void | evalTo (MatrixBase< DenseDerived > &other) const |
| |
| template<typename DenseDerived> |
| void | evalToLazy (MatrixBase< DenseDerived > &other) const |
| |
| const LDLT< PlainObject, UpLo > | ldlt () const |
| |
| const LLT< PlainObject, UpLo > | llt () const |
| |
| template<typename OtherDerived> |
| SelfadjointProductMatrix< MatrixType, Mode, false, OtherDerived, 0, OtherDerived::IsVectorAtCompileTime > | operator* (const MatrixBase< OtherDerived > &rhs) const |
| |
| RealScalar | operatorNorm () const |
| | Computes the L2 operator norm.
|
| |
| template<typename DerivedU, typename DerivedV> |
| SelfAdjointView & | rankUpdate (const MatrixBase< DerivedU > &u, const MatrixBase< DerivedV > &v, Scalar alpha=Scalar(1)) |
| |
| template<typename DerivedU> |
| SelfAdjointView & | rankUpdate (const MatrixBase< DerivedU > &u, Scalar alpha=Scalar(1)) |
| |
| Index | size () const |
| |
template<typename
MatrixType, unsigned int UpLo>
class Eigen::SelfAdjointView< MatrixType, UpLo >
Expression of a selfadjoint matrix from a triangular part of a dense matrix.
- Parameters
-
| MatrixType | the type of the dense matrix storing the coefficients |
| TriangularPart | can be either Lower or Upper |
This class is an expression of a sefladjoint matrix from a triangular part of a matrix with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() and most of the time this is the only way that it is used.
- See also
- class TriangularBase, MatrixBase::selfadjointView()
Computes the eigenvalues of a matrix.
- Returns
- Column vector containing the eigenvalues.
This is defined in the Eigenvalues module.
#include <Eigen/Eigenvalues>
This function computes the eigenvalues with the help of the SelfAdjointEigenSolver class. The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.
Example:
cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
static const ConstantReturnType Ones(Index rows, Index cols)
Definition CwiseNullaryOp.h:557
EigenvaluesReturnType eigenvalues() const
Computes the eigenvalues of a matrix.
Definition MatrixBaseEigenvalues.h:89
@ Lower
Definition Constants.h:162
Output:
The eigenvalues of the 3x3 matrix of ones are:
-3.09e-16
0
3
- See also
- SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues()
References SelfAdjointEigenSolver< _MatrixType >::eigenvalues().
Referenced by operatorNorm().
Computes the L2 operator norm.
- Returns
- Operator norm of the matrix.
This is defined in the Eigenvalues module.
#include <Eigen/Eigenvalues>
This function computes the L2 operator norm of a self-adjoint matrix. For a self-adjoint matrix, the operator norm is the largest eigenvalue.
The current implementation uses the eigenvalues of the matrix, as computed by eigenvalues(), to compute the operator norm of the matrix.
Example:
cout << "The operator norm of the 3x3 matrix of ones is "
RealScalar operatorNorm() const
Computes the L2 operator norm.
Definition MatrixBaseEigenvalues.h:152
Output:
The operator norm of the 3x3 matrix of ones is 3
- See also
- eigenvalues(), MatrixBase::operatorNorm()
References eigenvalues().