LDLT.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
6// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
7// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
8//
9// This Source Code Form is subject to the terms of the Mozilla
10// Public License v. 2.0. If a copy of the MPL was not distributed
11// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
12
13#ifndef EIGEN_LDLT_H
14#define EIGEN_LDLT_H
15
16namespace Eigen {
17
18namespace internal {
19template<typename MatrixType, int UpLo> struct LDLT_Traits;
20}
21
45template<typename _MatrixType, int _UpLo> class LDLT
46{
47 public:
48 typedef _MatrixType MatrixType;
49 enum {
50 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
51 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
52 Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
53 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
54 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
55 UpLo = _UpLo
56 };
57 typedef typename MatrixType::Scalar Scalar;
58 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
59 typedef typename MatrixType::Index Index;
61
64
65 typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
66
72 LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {}
73
80 LDLT(Index size)
81 : m_matrix(size, size),
82 m_transpositions(size),
83 m_temporary(size),
84 m_isInitialized(false)
85 {}
86
92 LDLT(const MatrixType& matrix)
93 : m_matrix(matrix.rows(), matrix.cols()),
94 m_transpositions(matrix.rows()),
95 m_temporary(matrix.rows()),
96 m_isInitialized(false)
97 {
98 compute(matrix);
99 }
100
104 void setZero()
105 {
106 m_isInitialized = false;
107 }
108
110 inline typename Traits::MatrixU matrixU() const
111 {
112 eigen_assert(m_isInitialized && "LDLT is not initialized.");
113 return Traits::getU(m_matrix);
114 }
115
117 inline typename Traits::MatrixL matrixL() const
118 {
119 eigen_assert(m_isInitialized && "LDLT is not initialized.");
120 return Traits::getL(m_matrix);
121 }
122
125 inline const TranspositionType& transpositionsP() const
126 {
127 eigen_assert(m_isInitialized && "LDLT is not initialized.");
128 return m_transpositions;
129 }
130
133 {
134 eigen_assert(m_isInitialized && "LDLT is not initialized.");
135 return m_matrix.diagonal();
136 }
137
139 inline bool isPositive() const
140 {
141 eigen_assert(m_isInitialized && "LDLT is not initialized.");
142 return m_sign == 1;
143 }
144
145 #ifdef EIGEN2_SUPPORT
146 inline bool isPositiveDefinite() const
147 {
148 return isPositive();
149 }
150 #endif
151
153 inline bool isNegative(void) const
154 {
155 eigen_assert(m_isInitialized && "LDLT is not initialized.");
156 return m_sign == -1;
157 }
158
174 template<typename Rhs>
175 inline const internal::solve_retval<LDLT, Rhs>
176 solve(const MatrixBase<Rhs>& b) const
177 {
178 eigen_assert(m_isInitialized && "LDLT is not initialized.");
179 eigen_assert(m_matrix.rows()==b.rows()
180 && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
181 return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
182 }
183
184 #ifdef EIGEN2_SUPPORT
185 template<typename OtherDerived, typename ResultType>
186 bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
187 {
188 *result = this->solve(b);
189 return true;
190 }
191 #endif
192
193 template<typename Derived>
194 bool solveInPlace(MatrixBase<Derived> &bAndX) const;
195
196 LDLT& compute(const MatrixType& matrix);
197
198 template <typename Derived>
199 LDLT& rankUpdate(const MatrixBase<Derived>& w,RealScalar alpha=1);
200
205 inline const MatrixType& matrixLDLT() const
206 {
207 eigen_assert(m_isInitialized && "LDLT is not initialized.");
208 return m_matrix;
209 }
210
212
213 inline Index rows() const { return m_matrix.rows(); }
214 inline Index cols() const { return m_matrix.cols(); }
215
222 {
223 eigen_assert(m_isInitialized && "LDLT is not initialized.");
224 return Success;
225 }
226
227 protected:
228
235 MatrixType m_matrix;
236 TranspositionType m_transpositions;
237 TmpMatrixType m_temporary;
238 int m_sign;
239 bool m_isInitialized;
240};
241
242namespace internal {
243
244template<int UpLo> struct ldlt_inplace;
245
246template<> struct ldlt_inplace<Lower>
247{
248 template<typename MatrixType, typename TranspositionType, typename Workspace>
249 static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0)
250 {
251 typedef typename MatrixType::Scalar Scalar;
252 typedef typename MatrixType::RealScalar RealScalar;
253 typedef typename MatrixType::Index Index;
254 eigen_assert(mat.rows()==mat.cols());
255 const Index size = mat.rows();
256
257 if (size <= 1)
258 {
259 transpositions.setIdentity();
260 if(sign)
261 *sign = real(mat.coeff(0,0))>0 ? 1:-1;
262 return true;
263 }
264
265 RealScalar cutoff(0), biggest_in_corner;
266
267 for (Index k = 0; k < size; ++k)
268 {
269 // Find largest diagonal element
270 Index index_of_biggest_in_corner;
271 biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
272 index_of_biggest_in_corner += k;
273
274 if(k == 0)
275 {
276 // The biggest overall is the point of reference to which further diagonals
277 // are compared; if any diagonal is negligible compared
278 // to the largest overall, the algorithm bails.
279 cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
280 }
281
282 // Finish early if the matrix is not full rank.
283 if(biggest_in_corner < cutoff)
284 {
285 for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
286 if(sign) *sign = 0;
287 break;
288 }
289
290 transpositions.coeffRef(k) = index_of_biggest_in_corner;
291 if(k != index_of_biggest_in_corner)
292 {
293 // apply the transposition while taking care to consider only
294 // the lower triangular part
295 Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
296 mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
297 mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
298 std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
299 for(int i=k+1;i<index_of_biggest_in_corner;++i)
300 {
301 Scalar tmp = mat.coeffRef(i,k);
302 mat.coeffRef(i,k) = conj(mat.coeffRef(index_of_biggest_in_corner,i));
303 mat.coeffRef(index_of_biggest_in_corner,i) = conj(tmp);
304 }
305 if(NumTraits<Scalar>::IsComplex)
306 mat.coeffRef(index_of_biggest_in_corner,k) = conj(mat.coeff(index_of_biggest_in_corner,k));
307 }
308
309 // partition the matrix:
310 // A00 | - | -
311 // lu = A10 | A11 | -
312 // A20 | A21 | A22
313 Index rs = size - k - 1;
314 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
315 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
316 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
317
318 if(k>0)
319 {
320 temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
321 mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
322 if(rs>0)
323 A21.noalias() -= A20 * temp.head(k);
324 }
325 if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
326 A21 /= mat.coeffRef(k,k);
327
328 if(sign)
329 {
330 // LDLT is not guaranteed to work for indefinite matrices, but let's try to get the sign right
331 int newSign = real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0;
332 if(k == 0)
333 *sign = newSign;
334 else if(*sign != newSign)
335 *sign = 0;
336 }
337 }
338
339 return true;
340 }
341
342 // Reference for the algorithm: Davis and Hager, "Multiple Rank
343 // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
344 // Trivial rearrangements of their computations (Timothy E. Holy)
345 // allow their algorithm to work for rank-1 updates even if the
346 // original matrix is not of full rank.
347 // Here only rank-1 updates are implemented, to reduce the
348 // requirement for intermediate storage and improve accuracy
349 template<typename MatrixType, typename WDerived>
350 static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, typename MatrixType::RealScalar sigma=1)
351 {
352 using internal::isfinite;
353 typedef typename MatrixType::Scalar Scalar;
354 typedef typename MatrixType::RealScalar RealScalar;
355 typedef typename MatrixType::Index Index;
356
357 const Index size = mat.rows();
358 eigen_assert(mat.cols() == size && w.size()==size);
359
360 RealScalar alpha = 1;
361
362 // Apply the update
363 for (Index j = 0; j < size; j++)
364 {
365 // Check for termination due to an original decomposition of low-rank
366 if (!(isfinite)(alpha))
367 break;
368
369 // Update the diagonal terms
370 RealScalar dj = real(mat.coeff(j,j));
371 Scalar wj = w.coeff(j);
372 RealScalar swj2 = sigma*abs2(wj);
373 RealScalar gamma = dj*alpha + swj2;
374
375 mat.coeffRef(j,j) += swj2/alpha;
376 alpha += swj2/dj;
377
378
379 // Update the terms of L
380 Index rs = size-j-1;
381 w.tail(rs) -= wj * mat.col(j).tail(rs);
382 if(gamma != 0)
383 mat.col(j).tail(rs) += (sigma*conj(wj)/gamma)*w.tail(rs);
384 }
385 return true;
386 }
387
388 template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
389 static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, typename MatrixType::RealScalar sigma=1)
390 {
391 // Apply the permutation to the input w
392 tmp = transpositions * w;
393
394 return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
395 }
396};
397
398template<> struct ldlt_inplace<Upper>
399{
400 template<typename MatrixType, typename TranspositionType, typename Workspace>
401 static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0)
402 {
403 Transpose<MatrixType> matt(mat);
404 return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
405 }
406
407 template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
408 static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, typename MatrixType::RealScalar sigma=1)
409 {
410 Transpose<MatrixType> matt(mat);
411 return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
412 }
413};
414
415template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
416{
417 typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
418 typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
419 static inline MatrixL getL(const MatrixType& m) { return m; }
420 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
421};
422
423template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
424{
425 typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
426 typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
427 static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
428 static inline MatrixU getU(const MatrixType& m) { return m; }
429};
430
431} // end namespace internal
432
435template<typename MatrixType, int _UpLo>
437{
438 eigen_assert(a.rows()==a.cols());
439 const Index size = a.rows();
440
441 m_matrix = a;
442
443 m_transpositions.resize(size);
444 m_isInitialized = false;
445 m_temporary.resize(size);
446
447 internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign);
448
449 m_isInitialized = true;
450 return *this;
451}
452
458template<typename MatrixType, int _UpLo>
459template<typename Derived>
460LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w,typename NumTraits<typename MatrixType::Scalar>::Real sigma)
461{
462 const Index size = w.rows();
463 if (m_isInitialized)
464 {
465 eigen_assert(m_matrix.rows()==size);
466 }
467 else
468 {
469 m_matrix.resize(size,size);
470 m_matrix.setZero();
471 m_transpositions.resize(size);
472 for (Index i = 0; i < size; i++)
473 m_transpositions.coeffRef(i) = i;
474 m_temporary.resize(size);
475 m_sign = sigma>=0 ? 1 : -1;
476 m_isInitialized = true;
477 }
478
479 internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
480
481 return *this;
482}
483
484namespace internal {
485template<typename _MatrixType, int _UpLo, typename Rhs>
486struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
487 : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
488{
489 typedef LDLT<_MatrixType,_UpLo> LDLTType;
490 EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
491
492 template<typename Dest> void evalTo(Dest& dst) const
493 {
494 eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
495 // dst = P b
496 dst = dec().transpositionsP() * rhs();
497
498 // dst = L^-1 (P b)
499 dec().matrixL().solveInPlace(dst);
500
501 // dst = D^-1 (L^-1 P b)
502 // more precisely, use pseudo-inverse of D (see bug 241)
503 using std::abs;
504 using std::max;
505 typedef typename LDLTType::MatrixType MatrixType;
506 typedef typename LDLTType::Scalar Scalar;
507 typedef typename LDLTType::RealScalar RealScalar;
508 const Diagonal<const MatrixType> vectorD = dec().vectorD();
509 RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(),
510 RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS
511 for (Index i = 0; i < vectorD.size(); ++i) {
512 if(abs(vectorD(i)) > tolerance)
513 dst.row(i) /= vectorD(i);
514 else
515 dst.row(i).setZero();
516 }
517
518 // dst = L^-T (D^-1 L^-1 P b)
519 dec().matrixU().solveInPlace(dst);
520
521 // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
522 dst = dec().transpositionsP().transpose() * dst;
523 }
524};
525}
526
540template<typename MatrixType,int _UpLo>
541template<typename Derived>
542bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
543{
544 eigen_assert(m_isInitialized && "LDLT is not initialized.");
545 eigen_assert(m_matrix.rows() == bAndX.rows());
546
547 bAndX = this->solve(bAndX);
548
549 return true;
550}
551
555template<typename MatrixType, int _UpLo>
557{
558 eigen_assert(m_isInitialized && "LDLT is not initialized.");
559 const Index size = m_matrix.rows();
560 MatrixType res(size,size);
561
562 // P
563 res.setIdentity();
564 res = transpositionsP() * res;
565 // L^* P
566 res = matrixU() * res;
567 // D(L^*P)
568 res = vectorD().asDiagonal() * res;
569 // L(DL^*P)
570 res = matrixL() * res;
571 // P^T (LDL^*P)
572 res = transpositionsP().transpose() * res;
573
574 return res;
575}
576
580template<typename MatrixType, unsigned int UpLo>
586
590template<typename Derived>
593{
594 return LDLT<PlainObject>(derived());
595}
596
597} // end namespace Eigen
598
599#endif // EIGEN_LDLT_H
internal::traits< MatrixWrapper< ExpressionType > >::Index Index
Definition DenseBase.h:51
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition Diagonal.h:66
Robust Cholesky decomposition of a matrix with pivoting.
Definition LDLT.h:46
bool isNegative(void) const
Definition LDLT.h:153
LDLT & compute(const MatrixType &matrix)
Definition LDLT.h:436
void setZero()
Definition LDLT.h:104
Traits::MatrixL matrixL() const
Definition LDLT.h:117
LDLT(const MatrixType &matrix)
Constructor with decomposition.
Definition LDLT.h:92
const TranspositionType & transpositionsP() const
Definition LDLT.h:125
MatrixType reconstructedMatrix() const
Definition LDLT.h:556
const internal::solve_retval< LDLT, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition LDLT.h:176
Traits::MatrixU matrixU() const
Definition LDLT.h:110
const MatrixType & matrixLDLT() const
Definition LDLT.h:205
ComputationInfo info() const
Reports whether previous computation was successful.
Definition LDLT.h:221
bool isPositive() const
Definition LDLT.h:139
LDLT(Index size)
Default Constructor with memory preallocation.
Definition LDLT.h:80
LDLT()
Default Constructor.
Definition LDLT.h:72
Diagonal< const MatrixType > vectorD() const
Definition LDLT.h:132
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
RealReturnType real() const
Definition MatrixBase.h:111
const LDLT< PlainObject > ldlt() const
Definition LDLT.h:592
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:129
Permutation matrix.
Definition PermutationMatrix.h:284
const LDLT< PlainObject, UpLo > ldlt() const
Definition LDLT.h:582
Represents a sequence of transpositions (row/column interchange)
Definition Transpositions.h:157
ComputationInfo
Definition Constants.h:367
@ Success
Definition Constants.h:369
@ Upper
Definition Constants.h:164
@ Lower
Definition Constants.h:162
const unsigned int RowMajorBit
Definition Constants.h:48
Definition LDLT.h:18