|
| class | aligned_allocator |
| |
| class | AlignedBox |
| |
| class | AlignedVector3 |
| | A vectorization friendly 3D vector. More...
|
| |
| class | AMDOrdering |
| |
| class | AngleAxis |
| |
| class | ArithmeticSequence |
| |
| class | Array |
| |
| class | ArrayBase |
| |
| class | ArrayWrapper |
| |
| struct | ArrayXpr |
| |
| class | AutoDiffScalar |
| | A scalar type replacement with automatic differentiation capability. More...
|
| |
| class | BDCSVD |
| |
| class | BiCGSTAB |
| |
| class | Block |
| |
| class | BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Sparse > |
| |
| class | BlockSparseMatrix |
| | A versatile sparse matrix representation where each element is a block. More...
|
| |
| class | CholmodBase |
| |
| class | CholmodDecomposition |
| |
| class | CholmodSimplicialLDLT |
| |
| class | CholmodSimplicialLLT |
| |
| class | CholmodSupernodalLLT |
| |
| class | COLAMDOrdering |
| |
| class | ColPivHouseholderQR |
| |
| class | CommaInitializer |
| |
| class | CompleteOrthogonalDecomposition |
| |
| class | ComplexEigenSolver |
| |
| class | ComplexSchur |
| |
| class | ConjugateGradient |
| |
| class | CwiseBinaryOp |
| |
| class | CwiseNullaryOp |
| |
| class | CwiseTernaryOp |
| |
| class | CwiseUnaryOp |
| |
| class | CwiseUnaryView |
| |
| struct | Dense |
| |
| class | DenseBase |
| |
| class | DenseCoeffsBase< Derived, DirectAccessors > |
| |
| class | DenseCoeffsBase< Derived, DirectWriteAccessors > |
| |
| class | DGMRES |
| | A Restarted GMRES with deflation. This class implements a modification of the GMRES solver for sparse linear systems. The basis is built with modified Gram-Schmidt. At each restart, a few approximated eigenvectors corresponding to the smallest eigenvalues are used to build a preconditioner for the next cycle. This preconditioner for deflation can be combined with any other preconditioner, the IncompleteLUT for instance. The preconditioner is applied at right of the matrix and the combination is multiplicative. More...
|
| |
| class | Diagonal |
| |
| class | DiagonalBase |
| |
| class | DiagonalMatrix |
| |
| class | DiagonalPreconditioner |
| |
| class | DiagonalWrapper |
| |
| class | DynamicSGroup |
| | Dynamic symmetry group. More...
|
| |
| class | EigenBase |
| |
| class | EigenSolver |
| |
| class | EulerAngles |
| | Represents a rotation in a 3 dimensional space as three Euler angles. More...
|
| |
| class | EulerSystem |
| | Represents a fixed Euler rotation system. More...
|
| |
| class | ForceAlignedAccess |
| |
| class | FullPivHouseholderQR |
| |
| class | FullPivLU |
| |
| class | GeneralizedEigenSolver |
| |
| class | GeneralizedSelfAdjointEigenSolver |
| |
| class | GMRES |
| | A GMRES solver for sparse square problems. More...
|
| |
| class | HessenbergDecomposition |
| |
| class | Homogeneous |
| |
| class | HouseholderQR |
| |
| class | HouseholderSequence |
| |
| class | HybridNonLinearSolver |
| | Finds a zero of a system of n nonlinear functions in n variables by a modification of the Powell hybrid method ("dogleg"). More...
|
| |
| class | Hyperplane |
| |
| class | IdentityPreconditioner |
| |
| class | IDRS |
| | The Induced Dimension Reduction method (IDR(s)) is a short-recurrences Krylov method for sparse square problems. More...
|
| |
| class | IDRSTABL |
| | The IDR(s)STAB(l) is a combination of IDR(s) and BiCGSTAB(l). It is a short-recurrences Krylov method for sparse square problems. It can outperform both IDR(s) and BiCGSTAB(l). IDR(s)STAB(l) generally closely follows the optimal GMRES convergence in terms of the number of Matrix-Vector products. However, without the increasing cost per iteration of GMRES. IDR(s)STAB(l) is suitable for both indefinite systems and systems with complex eigenvalues. More...
|
| |
| class | IncompleteCholesky |
| |
| class | IncompleteLUT |
| |
| class | IndexedView |
| |
| class | InnerIterator |
| |
| class | InnerStride |
| |
| class | Inverse |
| |
| class | IOFormat |
| |
| class | IterativeSolverBase |
| |
| class | IterScaling |
| | iterative scaling algorithm to equilibrate rows and column norms in matrices More...
|
| |
| class | JacobiRotation |
| |
| class | JacobiSVD |
| |
| class | KahanSum |
| | Kahan algorithm based accumulator. More...
|
| |
| class | KdBVH |
| | A simple bounding volume hierarchy based on AlignedBox. More...
|
| |
| class | KroneckerProduct |
| | Kronecker tensor product helper class for dense matrices. More...
|
| |
| class | KroneckerProductBase |
| | The base class of dense and sparse Kronecker product. More...
|
| |
| class | KroneckerProductSparse |
| | Kronecker tensor product helper class for sparse matrices. More...
|
| |
| class | LDLT |
| |
| class | LeastSquareDiagonalPreconditioner |
| |
| class | LeastSquaresConjugateGradient |
| |
| class | LevenbergMarquardt |
| | Performs non linear optimization over a non-linear function, using a variant of the Levenberg Marquardt algorithm. More...
|
| |
| class | LLT |
| |
| class | Map |
| |
| class | Map< const Quaternion< Scalar_ >, Options_ > |
| |
| class | Map< Quaternion< Scalar_ >, Options_ > |
| |
| class | Map< SparseMatrixType > |
| |
| class | MapBase< Derived, WriteAccessors > |
| |
| class | Matrix |
| |
| class | MatrixBase |
| |
| class | MatrixComplexPowerReturnValue |
| | Proxy for the matrix power of some matrix (expression). More...
|
| |
| struct | MatrixExponentialReturnValue |
| | Proxy for the matrix exponential of some matrix (expression). More...
|
| |
| class | MatrixFunctionReturnValue |
| | Proxy for the matrix function of some matrix (expression). More...
|
| |
| class | MatrixLogarithmReturnValue |
| | Proxy for the matrix logarithm of some matrix (expression). More...
|
| |
| class | MatrixMarketIterator |
| | Iterator to browse matrices from a specified folder. More...
|
| |
| class | MatrixPower |
| | Class for computing matrix powers. More...
|
| |
| class | MatrixPowerAtomic |
| | Class for computing matrix powers. More...
|
| |
| class | MatrixPowerParenthesesReturnValue |
| | Proxy for the matrix power of some matrix. More...
|
| |
| class | MatrixPowerReturnValue |
| | Proxy for the matrix power of some matrix (expression). More...
|
| |
| class | MatrixSquareRootReturnValue |
| | Proxy for the matrix square root of some matrix (expression). More...
|
| |
| class | MatrixWrapper |
| |
| struct | MatrixXpr |
| |
| class | MaxSizeVector |
| |
| class | MetisOrdering |
| |
| class | MINRES |
| | A minimal residual solver for sparse symmetric problems. More...
|
| |
| class | NaturalOrdering |
| |
| class | NestByValue |
| |
| class | NNLS |
| | Implementation of the Non-Negative Least Squares (NNLS) algorithm. More...
|
| |
| class | NoAlias |
| |
| class | NumericalDiff |
| |
| class | NumTraits |
| |
| class | OuterStride |
| |
| class | ParametrizedLine |
| |
| class | PardisoLDLT |
| |
| class | PardisoLLT |
| |
| class | PardisoLU |
| |
| class | PartialPivLU |
| |
| class | PartialReduxExpr |
| |
| class | PastixLDLT |
| |
| class | PastixLLT |
| |
| class | PastixLU |
| |
| class | PermutationBase |
| |
| class | PermutationMatrix |
| |
| struct | PermutationStorage |
| |
| class | PermutationWrapper |
| |
| class | PlainObjectBase |
| |
| class | PolynomialSolver |
| | A polynomial solver. More...
|
| |
| class | PolynomialSolverBase |
| | Defined to be inherited by polynomial solvers: it provides convenient methods such as. More...
|
| |
| class | Product |
| |
| class | Quaternion |
| |
| class | QuaternionBase |
| |
| class | RandomSetter |
| | The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access. More...
|
| |
| class | RealQZ |
| |
| class | RealSchur |
| |
| class | Ref |
| |
| class | Ref< SparseMatrixType, Options > |
| |
| class | Ref< SparseVectorType > |
| |
| class | Replicate |
| |
| class | Reshaped |
| |
| class | Reverse |
| |
| class | Rotation2D |
| |
| class | RotationBase |
| |
| class | ScalarBinaryOpTraits |
| |
| class | SelfAdjointEigenSolver |
| |
| class | SelfAdjointView |
| |
| class | Serializer |
| |
| class | SGroup |
| | Symmetry group, initialized from template arguments. More...
|
| |
| class | SimplicialCholesky |
| |
| class | SimplicialCholeskyBase |
| |
| class | SimplicialLDLT |
| |
| class | SimplicialLLT |
| |
| class | SimplicialNonHermitianLDLT |
| |
| class | SimplicialNonHermitianLLT |
| |
| class | SkewSymmetricBase |
| |
| class | SkewSymmetricMatrix3 |
| |
| class | SkewSymmetricWrapper |
| |
| class | Solve |
| |
| class | SolverBase |
| |
| struct | SolverStorage |
| |
| class | SolveWithGuess |
| |
| struct | Sparse |
| |
| class | SparseCompressedBase |
| |
| class | SparseInverse |
| | calculate sparse subset of inverse of sparse matrix More...
|
| |
| class | SparseLU |
| |
| class | SparseMapBase< Derived, WriteAccessors > |
| |
| class | SparseMatrix |
| |
| class | SparseMatrixBase |
| |
| class | SparseQR |
| |
| class | SparseSelfAdjointView |
| |
| class | SparseSolverBase |
| |
| class | SparseVector |
| |
| class | SparseView |
| |
| class | Spline |
| | A class representing multi-dimensional spline curves. More...
|
| |
| struct | SplineFitting |
| | Spline fitting methods. More...
|
| |
| struct | SplineTraits< Spline< Scalar_, Dim_, Degree_ >, _DerivativeOrder > |
| | Compile-time attributes of the Spline class for fixed degree. More...
|
| |
| struct | SplineTraits< Spline< Scalar_, Dim_, Degree_ >, Dynamic > |
| | Compile-time attributes of the Spline class for Dynamic degree. More...
|
| |
| class | SPQR |
| |
| class | StaticSGroup |
| | Static symmetry group. More...
|
| |
| struct | StdMapTraits |
| |
| struct | StdUnorderedMapTraits |
| |
| class | Stride |
| |
| class | SuperILU |
| |
| class | SuperLU |
| |
| class | SuperLUBase |
| |
| class | SVDBase |
| |
| class | Tensor |
| | The tensor class. More...
|
| |
| class | TensorAssignOp |
| |
| class | TensorAsyncDevice |
| | Pseudo expression providing an operator = that will evaluate its argument asynchronously on the specified device. Currently only ThreadPoolDevice implements proper asynchronous execution, while the default and GPU devices just run the expression synchronously and call m_done() on completion.. More...
|
| |
| class | TensorBase |
| | The tensor base class. More...
|
| |
| class | TensorBroadcastingOp |
| |
| class | TensorChippingOp |
| |
| class | TensorConcatenationOp |
| | Tensor concatenation class. More...
|
| |
| class | TensorContractionOp |
| |
| class | TensorConversionOp |
| | Tensor conversion class. This class makes it possible to vectorize type casting operations when the number of scalars per packet in the source and the destination type differ. More...
|
| |
| class | TensorConvolutionOp |
| |
| class | TensorCostModel |
| | A cost model used to limit the number of threads used for evaluating tensor expression. More...
|
| |
| class | TensorCustomBinaryOp |
| | Tensor custom class. More...
|
| |
| class | TensorCustomUnaryOp |
| | Tensor custom class. More...
|
| |
| class | TensorCwiseBinaryOp |
| | Tensor binary expression. More...
|
| |
| class | TensorCwiseNullaryOp |
| | Tensor nullary expression. More...
|
| |
| class | TensorCwiseUnaryOp |
| | Tensor unary expression. More...
|
| |
| class | TensorDevice |
| | Pseudo expression providing an operator = that will evaluate its argument on the specified computing 'device' (GPU, thread pool, ...) More...
|
| |
| struct | TensorEvaluator |
| | The tensor evaluator class. More...
|
| |
| class | TensorFFTOp |
| | Tensor FFT class. More...
|
| |
| class | TensorFixedSize |
| | The fixed sized version of the tensor class. More...
|
| |
| class | TensorForcedEvalOp |
| | Tensor reshaping class. More...
|
| |
| class | TensorGeneratorOp |
| | Tensor generator class. More...
|
| |
| class | TensorImagePatchOp |
| | Patch extraction specialized for image processing. This assumes that the input has a least 3 dimensions ordered as follow: 1st dimension: channels (of size d) 2nd dimension: rows (of size r) 3rd dimension: columns (of size c) There can be additional dimensions such as time (for video) or batch (for bulk processing after the first 3. Calling the image patch code with patch_rows and patch_cols is equivalent to calling the regular patch extraction code with parameters d, patch_rows, patch_cols, and 1 for all the additional dimensions. More...
|
| |
| class | TensorIndexPairOp |
| | Tensor + Index Pair class. More...
|
| |
| class | TensorInflationOp |
| | Tensor inflation class. More...
|
| |
| class | TensorMap |
| | A tensor expression mapping an existing array of data. More...
|
| |
| class | TensorPaddingOp |
| | Tensor padding class. At the moment only padding with a constant value is supported. More...
|
| |
| class | TensorPatchOp |
| | Tensor patch class. More...
|
| |
| class | TensorReductionOp |
| | Tensor reduction class. More...
|
| |
| class | TensorRef |
| | A reference to a tensor expression The expression will be evaluated lazily (as much as possible). More...
|
| |
| class | TensorRef< const PlainObjectType > |
| | A reference to a constant tensor expression The expression will be evaluated lazily (as much as possible). More...
|
| |
| class | TensorReshapingOp |
| | Tensor reshaping class. More...
|
| |
| class | TensorReverseOp |
| | Tensor reverse elements class. More...
|
| |
| class | TensorRollOp |
| | Tensor roll (circular shift) elements class. More...
|
| |
| class | TensorScanOp |
| | Tensor scan class. More...
|
| |
| class | TensorShufflingOp |
| | Tensor shuffling class. More...
|
| |
| class | TensorStridingOp |
| | Tensor striding class. More...
|
| |
| class | TensorTraceOp |
| | Tensor Trace class. More...
|
| |
| class | TensorVolumePatchOp |
| | Patch extraction specialized for processing of volumetric data. This assumes that the input has a least 4 dimensions ordered as follows: More...
|
| |
| class | Transform |
| |
| class | Translation |
| |
| class | Transpose |
| |
| class | Transpositions |
| |
| struct | TranspositionsStorage |
| |
| class | TriangularBase |
| |
| class | TriangularView |
| |
| class | TriangularViewImpl< MatrixType, Mode, Sparse > |
| |
| class | TriangularViewImpl< MatrixType_, Mode_, Dense > |
| |
| class | Tridiagonalization |
| |
| class | Triplet |
| |
| class | UmfPackLU |
| |
| class | UniformScaling |
| |
| class | VectorBlock |
| |
| class | VectorwiseOp |
| |
| class | WithFormat |
| |
|
| template<typename Derived, typename OtherDerived> |
| Derived::Scalar | accurateDot (const SparseMatrixBase< Derived > &A, const SparseMatrixBase< OtherDerived > &other) |
| | computes an accurate dot product on two sparse vectors
|
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0_op< typename Derived::Scalar >, const Derived > | bessel_i0 (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0e_op< typename Derived::Scalar >, const Derived > | bessel_i0e (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1_op< typename Derived::Scalar >, const Derived > | bessel_i1 (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1e_op< typename Derived::Scalar >, const Derived > | bessel_i1e (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j0_op< typename Derived::Scalar >, const Derived > | bessel_j0 (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j1_op< typename Derived::Scalar >, const Derived > | bessel_j1 (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0_op< typename Derived::Scalar >, const Derived > | bessel_k0 (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0e_op< typename Derived::Scalar >, const Derived > | bessel_k0e (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1_op< typename Derived::Scalar >, const Derived > | bessel_k1 (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1e_op< typename Derived::Scalar >, const Derived > | bessel_k1e (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y0_op< typename Derived::Scalar >, const Derived > | bessel_y0 (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename Derived> |
| const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y1_op< typename Derived::Scalar >, const Derived > | bessel_y1 (const Eigen::ArrayBase< Derived > &x) |
| |
| template<typename ArgADerived, typename ArgBDerived, typename ArgXDerived> |
| const Eigen::CwiseTernaryOp< Eigen::internal::scalar_betainc_op< typename ArgXDerived::Scalar >, const ArgADerived, const ArgBDerived, const ArgXDerived > | betainc (const Eigen::ArrayBase< ArgADerived > &a, const Eigen::ArrayBase< ArgBDerived > &b, const Eigen::ArrayBase< ArgXDerived > &x) |
| |
| template<typename ADerived, typename BDerived, typename XDerived> |
| const TensorCwiseTernaryOp< internal::scalar_betainc_op< typename XDerived::Scalar >, const ADerived, const BDerived, const XDerived > | betainc (const Eigen::TensorBase< ADerived, ReadOnlyAccessors > &a, const Eigen::TensorBase< BDerived, ReadOnlyAccessors > &b, const Eigen::TensorBase< XDerived, ReadOnlyAccessors > &x) |
| |
| template<typename BVH, typename Intersector> |
| void | BVIntersect (const BVH &tree, Intersector &intersector) |
| |
| template<typename BVH1, typename BVH2, typename Intersector> |
| void | BVIntersect (const BVH1 &tree1, const BVH2 &tree2, Intersector &intersector) |
| |
| template<typename BVH, typename Minimizer> |
| Minimizer::Scalar | BVMinimize (const BVH &tree, Minimizer &minimizer) |
| |
| template<typename BVH1, typename BVH2, typename Minimizer> |
| Minimizer::Scalar | BVMinimize (const BVH1 &tree1, const BVH2 &tree2, Minimizer &minimizer) |
| |
| template<typename Polynomial> |
| NumTraits< typenamePolynomial::Scalar >::Real | cauchy_max_bound (const Polynomial &poly) |
| |
| template<typename Polynomial> |
| NumTraits< typenamePolynomial::Scalar >::Real | cauchy_min_bound (const Polynomial &poly) |
| |
| template<typename PointArrayType, typename KnotVectorType> |
| void | ChordLengths (const PointArrayType &pts, KnotVectorType &chord_lengths) |
| | Computes chord length parameters which are required for spline interpolation.
|
| |
| template<typename AlphaDerived, typename SampleDerived> |
| const Eigen::CwiseBinaryOp< Eigen::internal::scalar_gamma_sample_der_alpha_op< typename AlphaDerived::Scalar >, const AlphaDerived, const SampleDerived > | gamma_sample_der_alpha (const Eigen::ArrayBase< AlphaDerived > &alpha, const Eigen::ArrayBase< SampleDerived > &sample) |
| |
| bool | getMarketHeader (const std::string &filename, int &sym, bool &iscomplex, bool &isdense) |
| | Reads the header of a matrixmarket file and determines the properties of a matrix.
|
| |
| template<typename Derived, typename ExponentDerived> |
| const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igamma_op< typename Derived::Scalar >, const Derived, const ExponentDerived > | igamma (const Eigen::ArrayBase< Derived > &a, const Eigen::ArrayBase< ExponentDerived > &x) |
| |
| template<typename Derived, typename ExponentDerived> |
| const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igamma_der_a_op< typename Derived::Scalar >, const Derived, const ExponentDerived > | igamma_der_a (const Eigen::ArrayBase< Derived > &a, const Eigen::ArrayBase< ExponentDerived > &x) |
| |
| template<typename Derived, typename ExponentDerived> |
| const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igammac_op< typename Derived::Scalar >, const Derived, const ExponentDerived > | igammac (const Eigen::ArrayBase< Derived > &a, const Eigen::ArrayBase< ExponentDerived > &x) |
| |
| template<typename KnotVectorType> |
| void | KnotAveraging (const KnotVectorType ¶meters, DenseIndex degree, KnotVectorType &knots) |
| | Computes knot averages.
|
| |
| template<typename KnotVectorType, typename ParameterVectorType, typename IndexArray> |
| void | KnotAveragingWithDerivatives (const ParameterVectorType ¶meters, const unsigned int degree, const IndexArray &derivativeIndices, KnotVectorType &knots) |
| | Computes knot averages when derivative constraints are present. Note that this is a technical interpretation of the referenced article since the algorithm contained therein is incorrect as written.
|
| |
| template<typename A, typename B> |
| KroneckerProductSparse< A, B > | kroneckerProduct (const EigenBase< A > &a, const EigenBase< B > &b) |
| |
| template<typename A, typename B> |
| KroneckerProduct< A, B > | kroneckerProduct (const MatrixBase< A > &a, const MatrixBase< B > &b) |
| |
| template<typename SparseMatrixType> |
| bool | loadMarket (SparseMatrixType &mat, const std::string &filename) |
| | Loads a sparse matrix from a matrixmarket format file.
|
| |
| template<typename DenseType> |
| bool | loadMarketDense (DenseType &mat, const std::string &filename) |
| | Loads a dense Matrix or Vector from a matrixmarket file. If a statically sized matrix has to be parsed and the file contains the wrong dimensions it is undefined behaviour.
|
| |
|
template<typename VectorType> |
| bool | loadMarketVector (VectorType &vec, const std::string &filename) |
| | Same functionality as loadMarketDense, deprecated.
|
| |
| template<typename MatrixType, typename ResultType> |
| void | matrix_sqrt_quasi_triangular (const MatrixType &arg, ResultType &result) |
| | Compute matrix square root of quasi-triangular matrix.
|
| |
| template<typename MatrixType, typename ResultType> |
| void | matrix_sqrt_triangular (const MatrixType &arg, ResultType &result) |
| | Compute matrix square root of triangular matrix.
|
| |
| template<typename Polynomials, typename T> |
| T | poly_eval (const Polynomials &poly, const T &x) |
| |
| template<typename Polynomials, typename T> |
| T | poly_eval_horner (const Polynomials &poly, const T &x) |
| |
| template<typename DerivedN, typename DerivedX> |
| const Eigen::CwiseBinaryOp< Eigen::internal::scalar_polygamma_op< typename DerivedX::Scalar >, const DerivedN, const DerivedX > | polygamma (const Eigen::ArrayBase< DerivedN > &n, const Eigen::ArrayBase< DerivedX > &x) |
| |
| template<typename RootVector, typename Polynomial> |
| void | roots_to_monicPolynomial (const RootVector &rv, Polynomial &poly) |
| |
| template<typename SparseMatrixType> |
| bool | saveMarket (const SparseMatrixType &mat, const std::string &filename, int sym=0) |
| | writes a sparse Matrix to a marketmarket format file
|
| |
| template<typename DenseType> |
| bool | saveMarketDense (const DenseType &mat, const std::string &filename) |
| | writes a dense Matrix or vector to a marketmarket format file
|
| |
|
template<typename VectorType> |
| bool | saveMarketVector (const VectorType &vec, const std::string &filename) |
| | Same functionality as saveMarketDense, deprecated.
|
| |
| template<typename DerivedX, typename DerivedQ> |
| const Eigen::CwiseBinaryOp< Eigen::internal::scalar_zeta_op< typename DerivedX::Scalar >, const DerivedX, const DerivedQ > | zeta (const Eigen::ArrayBase< DerivedX > &x, const Eigen::ArrayBase< DerivedQ > &q) |
| |