![]() |
Eigen
5.0.1-dev+60122df6
|
#include <Eigen/src/SparseCore/SparseSelfAdjointView.h>
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
| MatrixType | the type of the dense matrix storing the coefficients |
| Mode | can be either Lower or Upper |
This class is an expression of a sefladjoint matrix from a triangular part of a matrix with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() and most of the time this is the only way that it is used.
Inheritance diagram for Eigen::SparseSelfAdjointView< MatrixType, Mode_ >:Public Member Functions | |
| template<typename OtherDerived> | |
| Product< SparseSelfAdjointView, OtherDerived > | operator* (const MatrixBase< OtherDerived > &rhs) const |
| template<typename OtherDerived> | |
| Product< SparseSelfAdjointView, OtherDerived > | operator* (const SparseMatrixBase< OtherDerived > &rhs) const |
| template<typename DerivedU> | |
| SparseSelfAdjointView & | rankUpdate (const SparseMatrixBase< DerivedU > &u, const Scalar &alpha=Scalar(1)) |
| SparseSymmetricPermutationProduct< MatrixTypeNested_, Mode > | twistedBy (const PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm) const |
Public Member Functions inherited from Eigen::EigenBase< SparseSelfAdjointView< MatrixType, Mode_ > > | |
| constexpr Index | cols () const noexcept |
| constexpr SparseSelfAdjointView< MatrixType, Mode_ > & | derived () |
| constexpr const SparseSelfAdjointView< MatrixType, Mode_ > & | derived () const |
| constexpr Index | rows () const noexcept |
| constexpr Index | size () const noexcept |
Additional Inherited Members | |
Public Types inherited from Eigen::EigenBase< SparseSelfAdjointView< MatrixType, Mode_ > > | |
| typedef Eigen::Index | Index |
| The interface type of indices. | |
|
inline |
Efficient sparse self-adjoint matrix times dense vector/matrix product
|
inline |
*this and a sparse matrix rhs.Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
| SparseSelfAdjointView & Eigen::SparseSelfAdjointView< MatrixType, Mode_ >::rankUpdate | ( | const SparseMatrixBase< DerivedU > & | u, |
| const Scalar & | alpha = Scalar(1) ) |
Perform a symmetric rank K update of the selfadjoint matrix *this: \( this = this + \alpha ( u u^* ) \) where u is a vector or matrix.
*this To perform \( this = this + \alpha ( u^* u ) \) you can simply call this function with u.adjoint().
|
inline |