AngleAxis< _Scalar > Class Template Reference

Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. More...

#include <AngleAxis.h>

+ Inheritance diagram for AngleAxis< _Scalar >:

Public Types

typedef Matrix< Scalar, Dim, Dim > RotationMatrixType
 
typedef Matrix< Scalar, Dim, Dim > RotationMatrixType
 
typedef _Scalar Scalar
 

Public Member Functions

 AngleAxis ()
 
template<typename OtherScalarType>
 AngleAxis (const AngleAxis< OtherScalarType > &other)
 
template<typename Derived>
 AngleAxis (const MatrixBase< Derived > &m)
 
template<typename QuatDerived>
 AngleAxis (const QuaternionBase< QuatDerived > &q)
 
template<typename Derived>
 AngleAxis (Scalar angle, const MatrixBase< Derived > &axis)
 
template<typename NewScalarType>
internal::cast_return_type< AngleAxis, AngleAxis< NewScalarType > >::type cast () const
 
template<typename Derived>
AngleAxis< Scalar > & fromRotationMatrix (const MatrixBase< Derived > &mat)
 Sets *this from a 3x3 rotation matrix.
 
AngleAxis inverse () const
 
bool isApprox (const AngleAxis &other, typename NumTraits< Scalar >::Real prec=NumTraits< Scalar >::dummy_precision()) const
 
RotationMatrixType matrix () const
 
RotationMatrixType matrix () const
 
QuaternionType operator* (const AngleAxis &other) const
 
internal::rotation_base_generic_product_selector< AngleAxis< _Scalar >, OtherDerived, OtherDerived::IsVectorAtCompileTime >::ReturnType operator* (const EigenBase< OtherDerived > &e) const
 
QuaternionType operator* (const QuaternionType &other) const
 
Transform< Scalar, Dim, Mode > operator* (const Transform< Scalar, Dim, Mode, Options > &t) const
 
Transform< Scalar, Dim, Isometryoperator* (const Translation< Scalar, Dim > &t) const
 
RotationMatrixType operator* (const UniformScaling< Scalar > &s) const
 
template<typename Derived>
AngleAxis< Scalar > & operator= (const MatrixBase< Derived > &mat)
 
template<typename QuatDerived>
AngleAxis< Scalar > & operator= (const QuaternionBase< QuatDerived > &q)
 
Matrix3 toRotationMatrix (void) const
 

Detailed Description

template<typename _Scalar>
class Eigen::AngleAxis< _Scalar >

Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.

This is defined in the Geometry module.

#include <Eigen/Geometry>
Parameters
_Scalarthe scalar type, i.e., the type of the coefficients.
Warning
When setting up an AngleAxis object, the axis vector must be normalized.

The following two typedefs are provided for convenience:

Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily mimic Euler-angles. Here is an example:

Matrix3f m;
m = AngleAxisf(0.25*M_PI, Vector3f::UnitX())
* AngleAxisf(0.5*M_PI, Vector3f::UnitY())
* AngleAxisf(0.33*M_PI, Vector3f::UnitZ());
cout << m << endl << "is unitary: " << m.isUnitary() << endl;
static const BasisReturnType UnitZ()
Definition CwiseNullaryOp.h:849
static const BasisReturnType UnitX()
Definition CwiseNullaryOp.h:829
bool isUnitary(RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
Definition Dot.h:245
static const BasisReturnType UnitY()
Definition CwiseNullaryOp.h:839
AngleAxis< float > AngleAxisf
Definition AngleAxis.h:146

Output:

1.19e-07        0        1
   0.969   -0.249        0
   0.249    0.969 1.19e-07
is unitary: 1
Note
This class is not aimed to be used to store a rotation transformation, but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) and transformation objects.
See also
class Quaternion, class Transform, MatrixBase::UnitX()

Member Typedef Documentation

◆ RotationMatrixType [1/2]

typedef Matrix<Scalar,Dim,Dim> RotationMatrixType
inherited

corresponding linear transformation matrix type

◆ RotationMatrixType [2/2]

typedef Matrix<Scalar,Dim,Dim> RotationMatrixType
inherited

corresponding linear transformation matrix type

◆ Scalar

template<typename _Scalar>
typedef _Scalar Scalar

the scalar type of the coefficients

Constructor & Destructor Documentation

◆ AngleAxis() [1/5]

template<typename _Scalar>
AngleAxis ( )
inline

Default constructor without initialization.

Referenced by AngleAxis< float >::inverse().

◆ AngleAxis() [2/5]

template<typename _Scalar>
template<typename Derived>
AngleAxis ( Scalar angle,
const MatrixBase< Derived > & axis )
inline

Constructs and initialize the angle-axis rotation from an angle in radian and an axis which must be normalized.

Warning
If the axis vector is not normalized, then the angle-axis object represents an invalid rotation.

◆ AngleAxis() [3/5]

template<typename _Scalar>
template<typename QuatDerived>
AngleAxis ( const QuaternionBase< QuatDerived > & q)
inlineexplicit

Constructs and initialize the angle-axis rotation from a quaternion q.

◆ AngleAxis() [4/5]

template<typename _Scalar>
template<typename Derived>
AngleAxis ( const MatrixBase< Derived > & m)
inlineexplicit

Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix.

◆ AngleAxis() [5/5]

template<typename _Scalar>
template<typename OtherScalarType>
AngleAxis ( const AngleAxis< OtherScalarType > & other)
inlineexplicit

Copy constructor with scalar type conversion

Member Function Documentation

◆ cast()

template<typename _Scalar>
template<typename NewScalarType>
internal::cast_return_type< AngleAxis, AngleAxis< NewScalarType > >::type cast ( ) const
inline
Returns
*this with scalar type casted to NewScalarType

Note that if NewScalarType is equal to the current scalar type of *this then this function smartly returns a const reference to *this.

Referenced by AngleAxis< float >::AngleAxis().

◆ inverse()

template<typename _Scalar>
AngleAxis inverse ( ) const
inline
Returns
the inverse rotation, i.e., an angle-axis with opposite rotation angle

◆ isApprox()

template<typename _Scalar>
bool isApprox ( const AngleAxis< _Scalar > & other,
typename NumTraits< Scalar >::Real prec = NumTraits<Scalar>::dummy_precision() ) const
inline
Returns
true if *this is approximately equal to other, within the precision determined by prec.
See also
MatrixBase::isApprox()

◆ matrix() [1/2]

RotationMatrixType matrix ( ) const
inlineinherited
Returns
an equivalent rotation matrix This function is added to be conform with the Transform class' naming scheme.

◆ matrix() [2/2]

RotationMatrixType matrix ( ) const
inlineinherited
Returns
an equivalent rotation matrix This function is added to be conform with the Transform class' naming scheme.

◆ operator*() [1/6]

template<typename _Scalar>
QuaternionType operator* ( const AngleAxis< _Scalar > & other) const
inline

Concatenates two rotations

◆ operator*() [2/6]

template<typename _Scalar>
internal::rotation_base_generic_product_selector< AngleAxis< _Scalar >, OtherDerived, OtherDerived::IsVectorAtCompileTime >::ReturnType operator* ( const EigenBase< OtherDerived > & e) const
inline
Returns
the concatenation of the rotation *this with a generic expression e e can be:
  • a DimxDim linear transformation matrix
  • a DimxDim diagonal matrix (axis aligned scaling)
  • a vector of size Dim

◆ operator*() [3/6]

template<typename _Scalar>
QuaternionType operator* ( const QuaternionType & other) const
inline

Concatenates two rotations

◆ operator*() [4/6]

template<typename _Scalar>
Transform< Scalar, Dim, Mode > operator* ( const Transform< Scalar, Dim, Mode, Options > & t) const
inline
Returns
the concatenation of the rotation *this with a transformation t

◆ operator*() [5/6]

template<typename _Scalar>
Transform< Scalar, Dim, Isometry > operator* ( const Translation< Scalar, Dim > & t) const
inline
Returns
the concatenation of the rotation *this with a translation t

◆ operator*() [6/6]

template<typename _Scalar>
RotationMatrixType operator* ( const UniformScaling< Scalar > & s) const
inline
Returns
the concatenation of the rotation *this with a uniform scaling s

◆ operator=() [1/2]

template<typename _Scalar>
template<typename Derived>
AngleAxis< Scalar > & operator= ( const MatrixBase< Derived > & mat)

Set *this from a 3x3 rotation matrix mat.

◆ operator=() [2/2]

template<typename _Scalar>
template<typename QuatDerived>
AngleAxis< Scalar > & operator= ( const QuaternionBase< QuatDerived > & q)

Set *this from a unit quaternion. The axis is normalized.

Warning
As any other method dealing with quaternion, if the input quaternion is not normalized then the result is undefined.

◆ toRotationMatrix()

template<typename Scalar>
AngleAxis< Scalar >::Matrix3 toRotationMatrix ( void ) const

Constructs and

Returns
an equivalent 3x3 rotation matrix.

References MatrixBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::diagonal().


The documentation for this class was generated from the following files: