|
| const TriangularView< const typename MatrixType::AdjointReturnType, TransposeMode > | adjoint () const |
| |
| Scalar | coeff (Index row, Index col) const |
| |
| Scalar & | coeffRef (Index row, Index col) |
| |
| TriangularView< MatrixConjugateReturnType, Mode > | conjugate () |
| |
| const TriangularView< MatrixConjugateReturnType, Mode > | conjugate () const |
| |
| template<typename Other> |
| void | copyCoeff (Index row, Index col, Other &other) |
| |
| Derived & | derived () |
| |
| const Derived & | derived () const |
| |
| template<typename DenseDerived> |
| void | evalTo (MatrixBase< DenseDerived > &other) const |
| |
| template<typename DenseDerived> |
| void | evalToLazy (MatrixBase< DenseDerived > &other) const |
| |
| void | fill (const Scalar &value) |
| |
| template<typename OtherDerived> |
| TriangularProduct< Mode, true, MatrixType, false, OtherDerived, OtherDerived::IsVectorAtCompileTime > | operator* (const MatrixBase< OtherDerived > &rhs) const |
| |
| TriangularView & | operator*= (const typename internal::traits< MatrixType >::Scalar &other) |
| |
| template<typename Other> |
| TriangularView & | operator+= (const DenseBase< Other > &other) |
| |
| template<typename Other> |
| TriangularView & | operator-= (const DenseBase< Other > &other) |
| |
| TriangularView & | operator/= (const typename internal::traits< MatrixType >::Scalar &other) |
| |
| template<typename OtherDerived> |
| TriangularView & | operator= (const TriangularBase< OtherDerived > &other) |
| |
| TriangularView & | setConstant (const Scalar &value) |
| |
| TriangularView & | setOnes () |
| |
| TriangularView & | setZero () |
| |
| Index | size () const |
| |
| template<int Side, typename Other> |
| const internal::triangular_solve_retval< Side, TriangularView< Derived, Mode >, Other > | solve (const MatrixBase< Other > &other) const |
| |
| template<int Side, typename OtherDerived> |
| void | solveInPlace (const MatrixBase< OtherDerived > &other) const |
| |
| TriangularView< Transpose< MatrixType >, TransposeMode > | transpose () |
| |
| const TriangularView< Transpose< MatrixType >, TransposeMode > | transpose () const |
| |
template<typename _MatrixType, unsigned int _Mode>
class Eigen::TriangularView< _MatrixType, _Mode >
Base class for triangular part in a matrix.
- Parameters
-
This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular matrices one should speak of "trapezoid" parts. This class is the return type of MatrixBase::triangularView() and most of the time this is the only way it is used.
- See also
- MatrixBase::triangularView()
template<typename _MatrixType, unsigned int _Mode>
template<int Side, typename Other>
| const internal::triangular_solve_retval< Side, TriangularView< Derived, Mode >, Other > solve |
( |
const MatrixBase< Other > & | other | ) |
const |
- Returns
- the product of the inverse of
*this with other, *this being triangular.
This function computes the inverse-matrix matrix product inverse(*this) * other if Side==OnTheLeft (the default), or the right-inverse-multiply other * inverse(*this) if Side==OnTheRight.
The matrix *this must be triangular and invertible (i.e., all the coefficients of the diagonal must be non zero). It works as a forward (resp. backward) substitution if *this is an upper (resp. lower) triangular matrix.
Example:
#ifndef _MSC_VER
#warning deprecated
#endif
Output:
This function returns an expression of the inverse-multiply and can works in-place if it is assigned to the same matrix or vector other.
For users coming from BLAS, this function (and more specifically solveInPlace()) offer all the operations supported by the *TRSV and *TRSM BLAS routines.
- See also
- TriangularView::solveInPlace()
template<typename MatrixType, unsigned int Mode>
template<int Side, typename OtherDerived>
| void solveInPlace |
( |
const MatrixBase< OtherDerived > & | _other | ) |
const |