GeneralMatrixMatrixTriangular.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
11#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
12
13namespace Eigen {
14
15namespace internal {
16
17/**********************************************************************
18* This file implements a general A * B product while
19* evaluating only one triangular part of the product.
20* This is more general version of self adjoint product (C += A A^T)
21* as the level 3 SYRK Blas routine.
22**********************************************************************/
23
24// forward declarations (defined at the end of this file)
25template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
26struct tribb_kernel;
27
28/* Optimized matrix-matrix product evaluating only one triangular half */
29template <typename Index,
30 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
31 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
32 int ResStorageOrder, int UpLo, int Version = Specialized>
33struct general_matrix_matrix_triangular_product;
34
35// as usual if the result is row major => we transpose the product
36template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
37 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo, int Version>
38struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,UpLo,Version>
39{
40 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
41 static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
42 const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride, ResScalar alpha)
43 {
44 general_matrix_matrix_triangular_product<Index,
45 RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
46 LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
48 ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha);
49 }
50};
51
52template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
53 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo, int Version>
54struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo,Version>
55{
56 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
57 static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
58 const RhsScalar* _rhs, Index rhsStride, ResScalar* res, Index resStride, ResScalar alpha)
59 {
60 const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
61 const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
62
63 typedef gebp_traits<LhsScalar,RhsScalar> Traits;
64
65 Index kc = depth; // cache block size along the K direction
66 Index mc = size; // cache block size along the M direction
67 Index nc = size; // cache block size along the N direction
69 // !!! mc must be a multiple of nr:
70 if(mc > Traits::nr)
71 mc = (mc/Traits::nr)*Traits::nr;
72
73 std::size_t sizeW = kc*Traits::WorkSpaceFactor;
74 std::size_t sizeB = sizeW + kc*size;
75 ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, kc*mc, 0);
76 ei_declare_aligned_stack_constructed_variable(RhsScalar, allocatedBlockB, sizeB, 0);
77 RhsScalar* blockB = allocatedBlockB + sizeW;
78
79 gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
80 gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
81 gebp_kernel <LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
82 tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, UpLo> sybb;
83
84 for(Index k2=0; k2<depth; k2+=kc)
85 {
86 const Index actual_kc = (std::min)(k2+kc,depth)-k2;
87
88 // note that the actual rhs is the transpose/adjoint of mat
89 pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, size);
90
91 for(Index i2=0; i2<size; i2+=mc)
92 {
93 const Index actual_mc = (std::min)(i2+mc,size)-i2;
94
95 pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
96
97 // the selected actual_mc * size panel of res is split into three different part:
98 // 1 - before the diagonal => processed with gebp or skipped
99 // 2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
100 // 3 - after the diagonal => processed with gebp or skipped
101 if (UpLo==Lower)
102 gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, (std::min)(size,i2), alpha,
103 -1, -1, 0, 0, allocatedBlockB);
104
105 sybb(res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha, allocatedBlockB);
106
107 if (UpLo==Upper)
108 {
109 Index j2 = i2+actual_mc;
110 gebp(res+resStride*j2+i2, resStride, blockA, blockB+actual_kc*j2, actual_mc, actual_kc, (std::max)(Index(0), size-j2), alpha,
111 -1, -1, 0, 0, allocatedBlockB);
112 }
113 }
114 }
115 }
116};
117
118// Optimized packed Block * packed Block product kernel evaluating only one given triangular part
119// This kernel is built on top of the gebp kernel:
120// - the current destination block is processed per panel of actual_mc x BlockSize
121// where BlockSize is set to the minimal value allowing gebp to be as fast as possible
122// - then, as usual, each panel is split into three parts along the diagonal,
123// the sub blocks above and below the diagonal are processed as usual,
124// while the triangular block overlapping the diagonal is evaluated into a
125// small temporary buffer which is then accumulated into the result using a
126// triangular traversal.
127template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
128struct tribb_kernel
129{
130 typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits;
131 typedef typename Traits::ResScalar ResScalar;
132
133 enum {
134 BlockSize = EIGEN_PLAIN_ENUM_MAX(mr,nr)
135 };
136 void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, ResScalar alpha, RhsScalar* workspace)
137 {
138 gebp_kernel<LhsScalar, RhsScalar, Index, mr, nr, ConjLhs, ConjRhs> gebp_kernel;
139 Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer;
140
141 // let's process the block per panel of actual_mc x BlockSize,
142 // again, each is split into three parts, etc.
143 for (Index j=0; j<size; j+=BlockSize)
144 {
145 Index actualBlockSize = std::min<Index>(BlockSize,size - j);
146 const RhsScalar* actual_b = blockB+j*depth;
147
148 if(UpLo==Upper)
149 gebp_kernel(res+j*resStride, resStride, blockA, actual_b, j, depth, actualBlockSize, alpha,
150 -1, -1, 0, 0, workspace);
151
152 // selfadjoint micro block
153 {
154 Index i = j;
155 buffer.setZero();
156 // 1 - apply the kernel on the temporary buffer
157 gebp_kernel(buffer.data(), BlockSize, blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
158 -1, -1, 0, 0, workspace);
159 // 2 - triangular accumulation
160 for(Index j1=0; j1<actualBlockSize; ++j1)
161 {
162 ResScalar* r = res + (j+j1)*resStride + i;
163 for(Index i1=UpLo==Lower ? j1 : 0;
164 UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
165 r[i1] += buffer(i1,j1);
166 }
167 }
168
169 if(UpLo==Lower)
170 {
171 Index i = j+actualBlockSize;
172 gebp_kernel(res+j*resStride+i, resStride, blockA+depth*i, actual_b, size-i, depth, actualBlockSize, alpha,
173 -1, -1, 0, 0, workspace);
174 }
175 }
176 }
177};
178
179} // end namespace internal
180
181// high level API
182
183template<typename MatrixType, unsigned int UpLo>
184template<typename ProductDerived, typename _Lhs, typename _Rhs>
185TriangularView<MatrixType,UpLo>& TriangularView<MatrixType,UpLo>::assignProduct(const ProductBase<ProductDerived, _Lhs,_Rhs>& prod, const Scalar& alpha)
186{
187 typedef typename internal::remove_all<typename ProductDerived::LhsNested>::type Lhs;
188 typedef internal::blas_traits<Lhs> LhsBlasTraits;
189 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
190 typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
191 typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
192
193 typedef typename internal::remove_all<typename ProductDerived::RhsNested>::type Rhs;
194 typedef internal::blas_traits<Rhs> RhsBlasTraits;
195 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
196 typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
197 typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
198
199 typename ProductDerived::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
200
201 internal::general_matrix_matrix_triangular_product<Index,
202 typename Lhs::Scalar, _ActualLhs::Flags&RowMajorBit ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
203 typename Rhs::Scalar, _ActualRhs::Flags&RowMajorBit ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
204 MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor, UpLo>
205 ::run(m_matrix.cols(), actualLhs.cols(),
206 &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &actualRhs.coeffRef(0,0), actualRhs.outerStride(),
207 const_cast<Scalar*>(m_matrix.data()), m_matrix.outerStride(), actualAlpha);
208
209 return *this;
210}
211
212} // end namespace Eigen
213
214#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
Base class for triangular part in a matrix.
Definition TriangularMatrix.h:160
@ RowMajor
Definition Constants.h:259
@ ColMajor
Definition Constants.h:257
@ Upper
Definition Constants.h:164
@ Lower
Definition Constants.h:162
const unsigned int RowMajorBit
Definition Constants.h:48
Definition LDLT.h:18
void computeProductBlockingSizes(SizeType &k, SizeType &m, SizeType &n)
Computes the blocking parameters for a m x k times k x n matrix product.
Definition GeneralBlockPanelKernel.h:73