template<typename _MatrixType, int _UpLo, typename _Preconditioner>
class Eigen::ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >
A conjugate gradient solver for sparse self-adjoint problems.
This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm. The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
- Template Parameters
-
| _MatrixType | the type of the matrix A, can be a dense or a sparse matrix. |
| _UpLo | the triangular part that will be used for the computations. It can be Lower, Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower. |
| _Preconditioner | the type of the preconditioner. Default is DiagonalPreconditioner |
The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations and NumTraits<Scalar>::epsilon() for the tolerance.
This class can be used as the direct solver classes. Here is a typical usage example:
int n = 10000;
VectorXd x(n), b(n);
std::cout <<
"#iterations: " << cg.
iterations() << std::endl;
std::cout <<
"estimated error: " << cg.
error() << std::endl;
ConjugateGradient()
Definition ConjugateGradient.h:169
int iterations() const
Definition IterativeSolverBase.h:154
RealScalar error() const
Definition IterativeSolverBase.h:161
const internal::solve_retval< Derived, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition IterativeSolverBase.h:172
Derived & compute(const EigenBase< InputDerived > &A)
Definition IterativeSolverBase.h:108
A versatible sparse matrix representation.
Definition SparseMatrix.h:87
By default the iterations start with x=0 as an initial guess of the solution. One can control the start using the solveWithGuess() method.
ConjugateGradient can also be used in a matrix-free context, see the following example .
- See also
- class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
| ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | analyzePattern (const EigenBase< InputDerived > &A) |
| |
| ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | compute (const EigenBase< InputDerived > &A) |
| |
| | ConjugateGradient () |
| |
| template<typename MatrixDerived> |
| | ConjugateGradient (const EigenBase< MatrixDerived > &A) |
| |
| RealScalar | error () const |
| |
| ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | factorize (const EigenBase< InputDerived > &A) |
| |
| ComputationInfo | info () const |
| |
| int | iterations () const |
| |
| int | maxIterations () const |
| |
| Preconditioner & | preconditioner () |
| |
| const Preconditioner & | preconditioner () const |
| |
| ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | setMaxIterations (int maxIters) |
| |
| ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > & | setTolerance (const RealScalar &tolerance) |
| |
| const internal::solve_retval< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
| |
| const internal::sparse_solve_retval< IterativeSolverBase, Rhs > | solve (const SparseMatrixBase< Rhs > &b) const |
| |
| template<typename Rhs, typename Guess> |
| const internal::solve_retval_with_guess< ConjugateGradient, Rhs, Guess > | solveWithGuess (const MatrixBase< Rhs > &b, const Guess &x0) const |
| |
| RealScalar | tolerance () const |
| |
template<typename _MatrixType, int _UpLo, typename _Preconditioner>
template<typename MatrixDerived>
Initialize the solver with matrix A for further Ax=b solving.
This constructor is a shortcut for the default constructor followed by a call to compute().
- Warning
- this class stores a reference to the matrix A as well as some precomputed values that depend on it. Therefore, if A is changed this class becomes invalid. Call compute() to update it with the new matrix A, or modify a copy of A.