Rotation given by a cosine-sine pair. More...
#include <Jacobi.h>
Public Member Functions | |
| JacobiRotation | adjoint () const |
| JacobiRotation () | |
| JacobiRotation (const Scalar &c, const Scalar &s) | |
| void | makeGivens (const Scalar &p, const Scalar &q, Scalar *z=0) |
| template<typename Derived> | |
| bool | makeJacobi (const MatrixBase< Derived > &, typename Derived::Index p, typename Derived::Index q) |
| bool | makeJacobi (RealScalar x, Scalar y, RealScalar z) |
| JacobiRotation | operator* (const JacobiRotation &other) |
| JacobiRotation | transpose () const |
Rotation given by a cosine-sine pair.
This is defined in the Jacobi module.
This class represents a Jacobi or Givens rotation. This is a 2D rotation in the plane J of angle 
c and sine s as follow: 
You can apply the respective counter-clockwise rotation to a column vector v by applying its adjoint on the left: 
|
inline |
Default constructor without any initialization.
Referenced by adjoint(), operator*(), and transpose().
|
inline |
Construct a planar rotation from a cosine-sine pair (c, s).
|
inline |
Returns the adjoint transformation
References JacobiRotation().
| void makeGivens | ( | const Scalar & | p, |
| const Scalar & | q, | ||
| Scalar * | z = 0 ) |
Makes *this as a Givens rotation G such that applying 


The value of z is returned if z is not null (the default is null). Also note that G is built such that the cosine is always real.
Example:
Output:
Here is the vector v: 0.68 -0.211 Here is the vector J' * v: 0.712 0
This function implements the continuous Givens rotation generation algorithm found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
References makeGivens().
Referenced by makeGivens().
|
inline |
Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the 2x2 selfadjoint matrix 

Example:
Output:
Here is the matrix m:
1.36 0.355
0.355 1.19
Here is the matrix J' * m * J:
1.64 0
0 0.913
References makeJacobi().
Referenced by makeJacobi().
| bool makeJacobi | ( | RealScalar | x, |
| Scalar | y, | ||
| RealScalar | z ) |
Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the selfadjoint 2x2 matrix 

|
inline |
Concatenates two planar rotation
References JacobiRotation().
|
inline |
Returns the transposed transformation
References JacobiRotation().
Referenced by MatrixBase< Derived >::applyOnTheRight(), and JacobiSVD< _MatrixType, QRPreconditioner >::compute().