Umeyama.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_UMEYAMA_H
11#define EIGEN_UMEYAMA_H
12
13// This file requires the user to include
14// * Eigen/Core
15// * Eigen/LU
16// * Eigen/SVD
17// * Eigen/Array
18
19namespace Eigen {
20
21#ifndef EIGEN_PARSED_BY_DOXYGEN
22
23// These helpers are required since it allows to use mixed types as parameters
24// for the Umeyama. The problem with mixed parameters is that the return type
25// cannot trivially be deduced when float and double types are mixed.
26namespace internal {
27
28// Compile time return type deduction for different MatrixBase types.
29// Different means here different alignment and parameters but the same underlying
30// real scalar type.
31template<typename MatrixType, typename OtherMatrixType>
32struct umeyama_transform_matrix_type
33{
34 enum {
35 MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),
36
37 // When possible we want to choose some small fixed size value since the result
38 // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want.
39 HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1
40 };
41
42 typedef Matrix<typename traits<MatrixType>::Scalar,
43 HomogeneousDimension,
44 HomogeneousDimension,
45 AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor),
46 HomogeneousDimension,
47 HomogeneousDimension
48 > type;
49};
50
51}
52
53#endif
54
93template <typename Derived, typename OtherDerived>
94typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
95umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true)
96{
97 typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
98 typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
99 typedef typename NumTraits<Scalar>::Real RealScalar;
100 typedef typename Derived::Index Index;
101
102 EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
103 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value),
104 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
105
106 enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
107
108 typedef Matrix<Scalar, Dimension, 1> VectorType;
110 typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;
111
112 const Index m = src.rows(); // dimension
113 const Index n = src.cols(); // number of measurements
114
115 // required for demeaning ...
116 const RealScalar one_over_n = 1 / static_cast<RealScalar>(n);
117
118 // computation of mean
119 const VectorType src_mean = src.rowwise().sum() * one_over_n;
120 const VectorType dst_mean = dst.rowwise().sum() * one_over_n;
121
122 // demeaning of src and dst points
123 const RowMajorMatrixType src_demean = src.colwise() - src_mean;
124 const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;
125
126 // Eq. (36)-(37)
127 const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
128
129 // Eq. (38)
130 const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
131
133
134 // Initialize the resulting transformation with an identity matrix...
135 TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
136
137 // Eq. (39)
138 VectorType S = VectorType::Ones(m);
139 if (sigma.determinant()<0) S(m-1) = -1;
140
141 // Eq. (40) and (43)
142 const VectorType& d = svd.singularValues();
143 Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
144 if (rank == m-1) {
145 if ( svd.matrixU().determinant() * svd.matrixV().determinant() > 0 ) {
146 Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
147 } else {
148 const Scalar s = S(m-1); S(m-1) = -1;
149 Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
150 S(m-1) = s;
151 }
152 } else {
153 Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
154 }
155
156 // Eq. (42)
157 const Scalar c = 1/src_var * svd.singularValues().dot(S);
158
159 // Eq. (41)
160 // Note that we first assign dst_mean to the destination so that there no need
161 // for a temporary.
162 Rt.col(m).head(m) = dst_mean;
163 Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;
164
165 if (with_scaling) Rt.block(0,0,m,m) *= c;
166
167 return Rt;
168}
169
170} // end namespace Eigen
171
172#endif // EIGEN_UMEYAMA_H
ConstColwiseReturnType colwise() const
Definition VectorwiseOp.h:555
Eigen::Transpose< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > transpose()
Definition Transpose.h:199
ConstRowwiseReturnType rowwise() const
Definition VectorwiseOp.h:580
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition JacobiSVD.h:479
const MatrixVType & matrixV() const
Definition JacobiSVD.h:604
const SingularValuesType & singularValues() const
Definition JacobiSVD.h:616
const MatrixUType & matrixU() const
Definition JacobiSVD.h:588
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
const DiagonalWrapper< const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > asDiagonal() const
Definition DiagonalMatrix.h:273
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:129
const ReturnType< internal::member_sum >::Type sum() const
Definition VectorwiseOp.h:330
const ReturnType< internal::member_squaredNorm, RealScalar >::Type squaredNorm() const
Definition VectorwiseOp.h:283
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama(const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
Returns the transformation between two point sets.
Definition Umeyama.h:95
@ RowMajor
Definition Constants.h:259
@ ColMajor
Definition Constants.h:257
@ ComputeFullV
Definition Constants.h:324
@ ComputeFullU
Definition Constants.h:320
const unsigned int RowMajorBit
Definition Constants.h:48
Definition LDLT.h:18