Eigen  3.2.10
 
Loading...
Searching...
No Matches
SparseMatrix.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SPARSEMATRIX_H
11#define EIGEN_SPARSEMATRIX_H
12
13namespace Eigen {
14
40
41namespace internal {
42template<typename _Scalar, int _Options, typename _Index>
43struct traits<SparseMatrix<_Scalar, _Options, _Index> >
44{
45 typedef _Scalar Scalar;
46 typedef _Index Index;
47 typedef Sparse StorageKind;
48 typedef MatrixXpr XprKind;
49 enum {
50 RowsAtCompileTime = Dynamic,
51 ColsAtCompileTime = Dynamic,
52 MaxRowsAtCompileTime = Dynamic,
53 MaxColsAtCompileTime = Dynamic,
54 Flags = _Options | NestByRefBit | LvalueBit,
55 CoeffReadCost = NumTraits<Scalar>::ReadCost,
56 SupportedAccessPatterns = InnerRandomAccessPattern
57 };
58};
59
60template<typename _Scalar, int _Options, typename _Index, int DiagIndex>
61struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex> >
62{
63 typedef SparseMatrix<_Scalar, _Options, _Index> MatrixType;
64 typedef typename nested<MatrixType>::type MatrixTypeNested;
65 typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
66
67 typedef _Scalar Scalar;
68 typedef Dense StorageKind;
69 typedef _Index Index;
70 typedef MatrixXpr XprKind;
71
72 enum {
73 RowsAtCompileTime = Dynamic,
74 ColsAtCompileTime = 1,
75 MaxRowsAtCompileTime = Dynamic,
76 MaxColsAtCompileTime = 1,
77 Flags = 0,
78 CoeffReadCost = _MatrixTypeNested::CoeffReadCost*10
79 };
80};
81
82} // end namespace internal
83
84template<typename _Scalar, int _Options, typename _Index>
86 : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> >
87{
88 public:
89 EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
90 EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
91 EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)
92
94 using Base::IsRowMajor;
95 typedef internal::CompressedStorage<Scalar,Index> Storage;
96 enum {
97 Options = _Options
98 };
99
100 protected:
101
102 typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
103
104 Index m_outerSize;
105 Index m_innerSize;
106 Index* m_outerIndex;
107 Index* m_innerNonZeros; // optional, if null then the data is compressed
108 Storage m_data;
109
110 Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
111 const Eigen::Map<const Matrix<Index,Dynamic,1> > innerNonZeros() const { return Eigen::Map<const Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
112
113 public:
114
116 inline bool isCompressed() const { return m_innerNonZeros==0; }
117
119 inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
121 inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
122
124 inline Index innerSize() const { return m_innerSize; }
126 inline Index outerSize() const { return m_outerSize; }
127
131 inline const Scalar* valuePtr() const { return m_data.valuePtr(); }
135 inline Scalar* valuePtr() { return m_data.valuePtr(); }
136
140 inline const Index* innerIndexPtr() const { return m_data.indexPtr(); }
144 inline Index* innerIndexPtr() { return m_data.indexPtr(); }
145
149 inline const Index* outerIndexPtr() const { return m_outerIndex; }
153 inline Index* outerIndexPtr() { return m_outerIndex; }
154
158 inline const Index* innerNonZeroPtr() const { return m_innerNonZeros; }
162 inline Index* innerNonZeroPtr() { return m_innerNonZeros; }
163
165 inline Storage& data() { return m_data; }
167 inline const Storage& data() const { return m_data; }
168
171 inline Scalar coeff(Index row, Index col) const
172 {
173 eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
174
175 const Index outer = IsRowMajor ? row : col;
176 const Index inner = IsRowMajor ? col : row;
177 Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
178 return m_data.atInRange(m_outerIndex[outer], end, inner);
179 }
180
189 inline Scalar& coeffRef(Index row, Index col)
190 {
191 eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
192
193 const Index outer = IsRowMajor ? row : col;
194 const Index inner = IsRowMajor ? col : row;
195
196 Index start = m_outerIndex[outer];
197 Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
198 eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
199 if(end<=start)
200 return insert(row,col);
201 const Index p = m_data.searchLowerIndex(start,end-1,inner);
202 if((p<end) && (m_data.index(p)==inner))
203 return m_data.value(p);
204 else
205 return insert(row,col);
206 }
207
220 Scalar& insert(Index row, Index col)
221 {
222 eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
223
224 if(isCompressed())
225 {
227 }
228 return insertUncompressed(row,col);
229 }
230
231 public:
232
233 class InnerIterator;
234 class ReverseInnerIterator;
235
237 inline void setZero()
238 {
239 m_data.clear();
240 memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
241 if(m_innerNonZeros)
242 memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(Index));
243 }
244
246 inline Index nonZeros() const
247 {
248 if(m_innerNonZeros)
249 return innerNonZeros().sum();
250 return static_cast<Index>(m_data.size());
251 }
252
256 inline void reserve(Index reserveSize)
257 {
258 eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
259 m_data.reserve(reserveSize);
260 }
261
262 #ifdef EIGEN_PARSED_BY_DOXYGEN
266 template<class SizesType>
267 inline void reserve(const SizesType& reserveSizes);
268 #else
269 template<class SizesType>
270 inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = typename SizesType::value_type())
271 {
272 EIGEN_UNUSED_VARIABLE(enableif);
273 reserveInnerVectors(reserveSizes);
274 }
275 template<class SizesType>
276 inline void reserve(const SizesType& reserveSizes, const typename SizesType::Scalar& enableif =
277 #if (!defined(_MSC_VER)) || (_MSC_VER>=1500) // MSVC 2005 fails to compile with this typename
278 typename
279 #endif
280 SizesType::Scalar())
281 {
282 EIGEN_UNUSED_VARIABLE(enableif);
283 reserveInnerVectors(reserveSizes);
284 }
285 #endif // EIGEN_PARSED_BY_DOXYGEN
286 protected:
287 template<class SizesType>
288 inline void reserveInnerVectors(const SizesType& reserveSizes)
289 {
290 if(isCompressed())
291 {
292 std::size_t totalReserveSize = 0;
293 // turn the matrix into non-compressed mode
294 m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
295 if (!m_innerNonZeros) internal::throw_std_bad_alloc();
296
297 // temporarily use m_innerSizes to hold the new starting points.
298 Index* newOuterIndex = m_innerNonZeros;
299
300 Index count = 0;
301 for(Index j=0; j<m_outerSize; ++j)
302 {
303 newOuterIndex[j] = count;
304 count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
305 totalReserveSize += reserveSizes[j];
306 }
307 m_data.reserve(totalReserveSize);
308 Index previousOuterIndex = m_outerIndex[m_outerSize];
309 for(Index j=m_outerSize-1; j>=0; --j)
310 {
311 Index innerNNZ = previousOuterIndex - m_outerIndex[j];
312 for(Index i=innerNNZ-1; i>=0; --i)
313 {
314 m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
315 m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
316 }
317 previousOuterIndex = m_outerIndex[j];
318 m_outerIndex[j] = newOuterIndex[j];
319 m_innerNonZeros[j] = innerNNZ;
320 }
321 m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
322
323 m_data.resize(m_outerIndex[m_outerSize]);
324 }
325 else
326 {
327 Index* newOuterIndex = static_cast<Index*>(std::malloc((m_outerSize+1)*sizeof(Index)));
328 if (!newOuterIndex) internal::throw_std_bad_alloc();
329
330 Index count = 0;
331 for(Index j=0; j<m_outerSize; ++j)
332 {
333 newOuterIndex[j] = count;
334 Index alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
335 Index toReserve = std::max<Index>(reserveSizes[j], alreadyReserved);
336 count += toReserve + m_innerNonZeros[j];
337 }
338 newOuterIndex[m_outerSize] = count;
339
340 m_data.resize(count);
341 for(Index j=m_outerSize-1; j>=0; --j)
342 {
343 Index offset = newOuterIndex[j] - m_outerIndex[j];
344 if(offset>0)
345 {
346 Index innerNNZ = m_innerNonZeros[j];
347 for(Index i=innerNNZ-1; i>=0; --i)
348 {
349 m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
350 m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
351 }
352 }
353 }
354
355 std::swap(m_outerIndex, newOuterIndex);
356 std::free(newOuterIndex);
357 }
358
359 }
360 public:
361
362 //--- low level purely coherent filling ---
363
374 inline Scalar& insertBack(Index row, Index col)
375 {
376 return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
377 }
378
381 inline Scalar& insertBackByOuterInner(Index outer, Index inner)
382 {
383 eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
384 eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
385 Index p = m_outerIndex[outer+1];
386 ++m_outerIndex[outer+1];
387 m_data.append(0, inner);
388 return m_data.value(p);
389 }
390
393 inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
394 {
395 Index p = m_outerIndex[outer+1];
396 ++m_outerIndex[outer+1];
397 m_data.append(0, inner);
398 return m_data.value(p);
399 }
400
403 inline void startVec(Index outer)
404 {
405 eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
406 eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
407 m_outerIndex[outer+1] = m_outerIndex[outer];
408 }
409
413 inline void finalize()
414 {
415 if(isCompressed())
416 {
417 Index size = static_cast<Index>(m_data.size());
418 Index i = m_outerSize;
419 // find the last filled column
420 while (i>=0 && m_outerIndex[i]==0)
421 --i;
422 ++i;
423 while (i<=m_outerSize)
424 {
425 m_outerIndex[i] = size;
426 ++i;
427 }
428 }
429 }
430
431 //---
432
433 template<typename InputIterators>
434 void setFromTriplets(const InputIterators& begin, const InputIterators& end);
435
436 void sumupDuplicates();
437
438 //---
439
442 Scalar& insertByOuterInner(Index j, Index i)
443 {
444 return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
445 }
446
450 {
451 if(isCompressed())
452 return;
453
454 Index oldStart = m_outerIndex[1];
455 m_outerIndex[1] = m_innerNonZeros[0];
456 for(Index j=1; j<m_outerSize; ++j)
457 {
458 Index nextOldStart = m_outerIndex[j+1];
459 Index offset = oldStart - m_outerIndex[j];
460 if(offset>0)
461 {
462 for(Index k=0; k<m_innerNonZeros[j]; ++k)
463 {
464 m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
465 m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
466 }
467 }
468 m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
469 oldStart = nextOldStart;
470 }
471 std::free(m_innerNonZeros);
472 m_innerNonZeros = 0;
473 m_data.resize(m_outerIndex[m_outerSize]);
474 m_data.squeeze();
475 }
476
479 {
480 if(m_innerNonZeros != 0)
481 return;
482 m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
483 for (Index i = 0; i < m_outerSize; i++)
484 {
485 m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
486 }
487 }
488
490 void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
491 {
492 prune(default_prunning_func(reference,epsilon));
493 }
494
502 template<typename KeepFunc>
503 void prune(const KeepFunc& keep = KeepFunc())
504 {
505 // TODO optimize the uncompressed mode to avoid moving and allocating the data twice
506 // TODO also implement a unit test
508
509 Index k = 0;
510 for(Index j=0; j<m_outerSize; ++j)
511 {
512 Index previousStart = m_outerIndex[j];
513 m_outerIndex[j] = k;
514 Index end = m_outerIndex[j+1];
515 for(Index i=previousStart; i<end; ++i)
516 {
517 if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
518 {
519 m_data.value(k) = m_data.value(i);
520 m_data.index(k) = m_data.index(i);
521 ++k;
522 }
523 }
524 }
525 m_outerIndex[m_outerSize] = k;
526 m_data.resize(k,0);
527 }
528
532 void conservativeResize(Index rows, Index cols)
533 {
534 // No change
535 if (this->rows() == rows && this->cols() == cols) return;
536
537 // If one dimension is null, then there is nothing to be preserved
538 if(rows==0 || cols==0) return resize(rows,cols);
539
540 Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
541 Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
542 Index newInnerSize = IsRowMajor ? cols : rows;
543
544 // Deals with inner non zeros
545 if (m_innerNonZeros)
546 {
547 // Resize m_innerNonZeros
548 Index *newInnerNonZeros = static_cast<Index*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(Index)));
549 if (!newInnerNonZeros) internal::throw_std_bad_alloc();
550 m_innerNonZeros = newInnerNonZeros;
551
552 for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)
553 m_innerNonZeros[i] = 0;
554 }
555 else if (innerChange < 0)
556 {
557 // Inner size decreased: allocate a new m_innerNonZeros
558 m_innerNonZeros = static_cast<Index*>(std::malloc((m_outerSize+outerChange+1) * sizeof(Index)));
559 if (!m_innerNonZeros) internal::throw_std_bad_alloc();
560 for(Index i = 0; i < m_outerSize; i++)
561 m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
562 }
563
564 // Change the m_innerNonZeros in case of a decrease of inner size
565 if (m_innerNonZeros && innerChange < 0)
566 {
567 for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
568 {
569 Index &n = m_innerNonZeros[i];
570 Index start = m_outerIndex[i];
571 while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n;
572 }
573 }
574
575 m_innerSize = newInnerSize;
576
577 // Re-allocate outer index structure if necessary
578 if (outerChange == 0)
579 return;
580
581 Index *newOuterIndex = static_cast<Index*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(Index)));
582 if (!newOuterIndex) internal::throw_std_bad_alloc();
583 m_outerIndex = newOuterIndex;
584 if (outerChange > 0)
585 {
586 Index last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
587 for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)
588 m_outerIndex[i] = last;
589 }
590 m_outerSize += outerChange;
591 }
592
596 void resize(Index rows, Index cols)
597 {
598 const Index outerSize = IsRowMajor ? rows : cols;
599 m_innerSize = IsRowMajor ? cols : rows;
600 m_data.clear();
601 if (m_outerSize != outerSize || m_outerSize==0)
602 {
603 std::free(m_outerIndex);
604 m_outerIndex = static_cast<Index*>(std::malloc((outerSize + 1) * sizeof(Index)));
605 if (!m_outerIndex) internal::throw_std_bad_alloc();
606
607 m_outerSize = outerSize;
608 }
609 if(m_innerNonZeros)
610 {
611 std::free(m_innerNonZeros);
612 m_innerNonZeros = 0;
613 }
614 memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
615 }
616
619 void resizeNonZeros(Index size)
620 {
621 // TODO remove this function
622 m_data.resize(size);
623 }
624
626 const Diagonal<const SparseMatrix> diagonal() const { return *this; }
627
630 : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
631 {
632 check_template_parameters();
633 resize(0, 0);
634 }
635
637 inline SparseMatrix(Index rows, Index cols)
638 : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
639 {
640 check_template_parameters();
641 resize(rows, cols);
642 }
643
645 template<typename OtherDerived>
646 inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
647 : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
648 {
649 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
650 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
651 check_template_parameters();
652 *this = other.derived();
653 }
654
656 template<typename OtherDerived, unsigned int UpLo>
658 : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
659 {
660 check_template_parameters();
661 *this = other;
662 }
663
665 inline SparseMatrix(const SparseMatrix& other)
666 : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
667 {
668 check_template_parameters();
669 *this = other.derived();
670 }
671
673 template<typename OtherDerived>
674 SparseMatrix(const ReturnByValue<OtherDerived>& other)
675 : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
676 {
677 check_template_parameters();
678 initAssignment(other);
679 other.evalTo(*this);
680 }
681
684 inline void swap(SparseMatrix& other)
685 {
686 //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
687 std::swap(m_outerIndex, other.m_outerIndex);
688 std::swap(m_innerSize, other.m_innerSize);
689 std::swap(m_outerSize, other.m_outerSize);
690 std::swap(m_innerNonZeros, other.m_innerNonZeros);
691 m_data.swap(other.m_data);
692 }
693
696 inline void setIdentity()
697 {
698 eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
699 this->m_data.resize(rows());
700 Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_data.indexPtr(), rows()).setLinSpaced(0, rows()-1);
701 Eigen::Map<Matrix<Scalar, Dynamic, 1> >(this->m_data.valuePtr(), rows()).setOnes();
702 Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_outerIndex, rows()+1).setLinSpaced(0, rows());
703 std::free(m_innerNonZeros);
704 m_innerNonZeros = 0;
705 }
706 inline SparseMatrix& operator=(const SparseMatrix& other)
707 {
708 if (other.isRValue())
709 {
710 swap(other.const_cast_derived());
711 }
712 else if(this!=&other)
713 {
714 initAssignment(other);
715 if(other.isCompressed())
716 {
717 memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index));
718 m_data = other.m_data;
719 }
720 else
721 {
722 Base::operator=(other);
723 }
724 }
725 return *this;
726 }
727
728 #ifndef EIGEN_PARSED_BY_DOXYGEN
729 template<typename Lhs, typename Rhs>
730 inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
731 { return Base::operator=(product); }
732
733 template<typename OtherDerived>
734 inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other)
735 {
736 initAssignment(other);
737 return Base::operator=(other.derived());
738 }
739
740 template<typename OtherDerived>
741 inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
742 { return Base::operator=(other.derived()); }
743 #endif
744
745 template<typename OtherDerived>
746 EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);
747
748 friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
749 {
750 EIGEN_DBG_SPARSE(
751 s << "Nonzero entries:\n";
752 if(m.isCompressed())
753 for (Index i=0; i<m.nonZeros(); ++i)
754 s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
755 else
756 for (Index i=0; i<m.outerSize(); ++i)
757 {
758 Index p = m.m_outerIndex[i];
759 Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
760 Index k=p;
761 for (; k<pe; ++k)
762 s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
763 for (; k<m.m_outerIndex[i+1]; ++k)
764 s << "(_,_) ";
765 }
766 s << std::endl;
767 s << std::endl;
768 s << "Outer pointers:\n";
769 for (Index i=0; i<m.outerSize(); ++i)
770 s << m.m_outerIndex[i] << " ";
771 s << " $" << std::endl;
772 if(!m.isCompressed())
773 {
774 s << "Inner non zeros:\n";
775 for (Index i=0; i<m.outerSize(); ++i)
776 s << m.m_innerNonZeros[i] << " ";
777 s << " $" << std::endl;
778 }
779 s << std::endl;
780 );
781 s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
782 return s;
783 }
784
787 {
788 std::free(m_outerIndex);
789 std::free(m_innerNonZeros);
790 }
791
792#ifndef EIGEN_PARSED_BY_DOXYGEN
794 Scalar sum() const;
795#endif
796
797# ifdef EIGEN_SPARSEMATRIX_PLUGIN
798# include EIGEN_SPARSEMATRIX_PLUGIN
799# endif
800
801protected:
802
803 template<typename Other>
804 void initAssignment(const Other& other)
805 {
806 resize(other.rows(), other.cols());
807 if(m_innerNonZeros)
808 {
809 std::free(m_innerNonZeros);
810 m_innerNonZeros = 0;
811 }
812 }
813
816 EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);
817
820 class SingletonVector
821 {
822 Index m_index;
823 Index m_value;
824 public:
825 typedef Index value_type;
826 SingletonVector(Index i, Index v)
827 : m_index(i), m_value(v)
828 {}
829
830 Index operator[](Index i) const { return i==m_index ? m_value : 0; }
831 };
832
835 EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);
836
837public:
840 EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
841 {
842 const Index outer = IsRowMajor ? row : col;
843 const Index inner = IsRowMajor ? col : row;
844
845 eigen_assert(!isCompressed());
846 eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));
847
848 Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
849 m_data.index(p) = inner;
850 return (m_data.value(p) = 0);
851 }
852
853private:
854 static void check_template_parameters()
855 {
856 EIGEN_STATIC_ASSERT(NumTraits<Index>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
857 EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
858 }
859
860 struct default_prunning_func {
861 default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
862 inline bool operator() (const Index&, const Index&, const Scalar& value) const
863 {
864 return !internal::isMuchSmallerThan(value, reference, epsilon);
865 }
866 Scalar reference;
867 RealScalar epsilon;
868 };
869};
870
871template<typename Scalar, int _Options, typename _Index>
872class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
873{
874 public:
875 InnerIterator(const SparseMatrix& mat, Index outer)
876 : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer])
877 {
878 if(mat.isCompressed())
879 m_end = mat.m_outerIndex[outer+1];
880 else
881 m_end = m_id + mat.m_innerNonZeros[outer];
882 }
883
884 inline InnerIterator& operator++() { m_id++; return *this; }
885
886 inline const Scalar& value() const { return m_values[m_id]; }
887 inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
888
889 inline Index index() const { return m_indices[m_id]; }
890 inline Index outer() const { return m_outer; }
891 inline Index row() const { return IsRowMajor ? m_outer : index(); }
892 inline Index col() const { return IsRowMajor ? index() : m_outer; }
893
894 inline operator bool() const { return (m_id < m_end); }
895
896 protected:
897 const Scalar* m_values;
898 const Index* m_indices;
899 const Index m_outer;
900 Index m_id;
901 Index m_end;
902};
903
904template<typename Scalar, int _Options, typename _Index>
905class SparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator
906{
907 public:
908 ReverseInnerIterator(const SparseMatrix& mat, Index outer)
909 : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_start(mat.m_outerIndex[outer])
910 {
911 if(mat.isCompressed())
912 m_id = mat.m_outerIndex[outer+1];
913 else
914 m_id = m_start + mat.m_innerNonZeros[outer];
915 }
916
917 inline ReverseInnerIterator& operator--() { --m_id; return *this; }
918
919 inline const Scalar& value() const { return m_values[m_id-1]; }
920 inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }
921
922 inline Index index() const { return m_indices[m_id-1]; }
923 inline Index outer() const { return m_outer; }
924 inline Index row() const { return IsRowMajor ? m_outer : index(); }
925 inline Index col() const { return IsRowMajor ? index() : m_outer; }
926
927 inline operator bool() const { return (m_id > m_start); }
928
929 protected:
930 const Scalar* m_values;
931 const Index* m_indices;
932 const Index m_outer;
933 Index m_id;
934 const Index m_start;
935};
936
937namespace internal {
938
939template<typename InputIterator, typename SparseMatrixType>
940void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, int Options = 0)
941{
942 EIGEN_UNUSED_VARIABLE(Options);
943 enum { IsRowMajor = SparseMatrixType::IsRowMajor };
944 typedef typename SparseMatrixType::Scalar Scalar;
945 typedef typename SparseMatrixType::Index Index;
946 SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols());
947
948 if(begin!=end)
949 {
950 // pass 1: count the nnz per inner-vector
951 Matrix<Index,Dynamic,1> wi(trMat.outerSize());
952 wi.setZero();
953 for(InputIterator it(begin); it!=end; ++it)
954 {
955 eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
956 wi(IsRowMajor ? it->col() : it->row())++;
957 }
958
959 // pass 2: insert all the elements into trMat
960 trMat.reserve(wi);
961 for(InputIterator it(begin); it!=end; ++it)
962 trMat.insertBackUncompressed(it->row(),it->col()) = it->value();
963
964 // pass 3:
965 trMat.sumupDuplicates();
966 }
967
968 // pass 4: transposed copy -> implicit sorting
969 mat = trMat;
970}
971
972}
973
974
1012template<typename Scalar, int _Options, typename _Index>
1013template<typename InputIterators>
1014void SparseMatrix<Scalar,_Options,_Index>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
1015{
1016 internal::set_from_triplets(begin, end, *this);
1017}
1018
1020template<typename Scalar, int _Options, typename _Index>
1021void SparseMatrix<Scalar,_Options,_Index>::sumupDuplicates()
1022{
1023 eigen_assert(!isCompressed());
1024 // TODO, in practice we should be able to use m_innerNonZeros for that task
1025 Matrix<Index,Dynamic,1> wi(innerSize());
1026 wi.fill(-1);
1027 Index count = 0;
1028 // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
1029 for(Index j=0; j<outerSize(); ++j)
1030 {
1031 Index start = count;
1032 Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j];
1033 for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
1034 {
1035 Index i = m_data.index(k);
1036 if(wi(i)>=start)
1037 {
1038 // we already meet this entry => accumulate it
1039 m_data.value(wi(i)) += m_data.value(k);
1040 }
1041 else
1042 {
1043 m_data.value(count) = m_data.value(k);
1044 m_data.index(count) = m_data.index(k);
1045 wi(i) = count;
1046 ++count;
1047 }
1048 }
1049 m_outerIndex[j] = start;
1050 }
1051 m_outerIndex[m_outerSize] = count;
1052
1053 // turn the matrix into compressed form
1054 std::free(m_innerNonZeros);
1055 m_innerNonZeros = 0;
1056 m_data.resize(m_outerIndex[m_outerSize]);
1057}
1058
1059template<typename Scalar, int _Options, typename _Index>
1060template<typename OtherDerived>
1061EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Options,_Index>::operator=(const SparseMatrixBase<OtherDerived>& other)
1062{
1063 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
1064 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
1065
1066 const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
1067 if (needToTranspose)
1068 {
1069 // two passes algorithm:
1070 // 1 - compute the number of coeffs per dest inner vector
1071 // 2 - do the actual copy/eval
1072 // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
1073 typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
1074 typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
1075 OtherCopy otherCopy(other.derived());
1076
1077 SparseMatrix dest(other.rows(),other.cols());
1078 Eigen::Map<Matrix<Index, Dynamic, 1> > (dest.m_outerIndex,dest.outerSize()).setZero();
1079
1080 // pass 1
1081 // FIXME the above copy could be merged with that pass
1082 for (Index j=0; j<otherCopy.outerSize(); ++j)
1083 for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
1084 ++dest.m_outerIndex[it.index()];
1085
1086 // prefix sum
1087 Index count = 0;
1088 Matrix<Index,Dynamic,1> positions(dest.outerSize());
1089 for (Index j=0; j<dest.outerSize(); ++j)
1090 {
1091 Index tmp = dest.m_outerIndex[j];
1092 dest.m_outerIndex[j] = count;
1093 positions[j] = count;
1094 count += tmp;
1095 }
1096 dest.m_outerIndex[dest.outerSize()] = count;
1097 // alloc
1098 dest.m_data.resize(count);
1099 // pass 2
1100 for (Index j=0; j<otherCopy.outerSize(); ++j)
1101 {
1102 for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
1103 {
1104 Index pos = positions[it.index()]++;
1105 dest.m_data.index(pos) = j;
1106 dest.m_data.value(pos) = it.value();
1107 }
1108 }
1109 this->swap(dest);
1110 return *this;
1111 }
1112 else
1113 {
1114 if(other.isRValue())
1115 initAssignment(other.derived());
1116 // there is no special optimization
1117 return Base::operator=(other.derived());
1118 }
1119}
1120
1121template<typename _Scalar, int _Options, typename _Index>
1122EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertUncompressed(Index row, Index col)
1123{
1124 eigen_assert(!isCompressed());
1125
1126 const Index outer = IsRowMajor ? row : col;
1127 const Index inner = IsRowMajor ? col : row;
1128
1129 Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
1130 Index innerNNZ = m_innerNonZeros[outer];
1131 if(innerNNZ>=room)
1132 {
1133 // this inner vector is full, we need to reallocate the whole buffer :(
1134 reserve(SingletonVector(outer,std::max<Index>(2,innerNNZ)));
1135 }
1136
1137 Index startId = m_outerIndex[outer];
1138 Index p = startId + m_innerNonZeros[outer];
1139 while ( (p > startId) && (m_data.index(p-1) > inner) )
1140 {
1141 m_data.index(p) = m_data.index(p-1);
1142 m_data.value(p) = m_data.value(p-1);
1143 --p;
1144 }
1145 eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exist, you must call coeffRef to this end");
1146
1147 m_innerNonZeros[outer]++;
1148
1149 m_data.index(p) = inner;
1150 return (m_data.value(p) = 0);
1151}
1152
1153template<typename _Scalar, int _Options, typename _Index>
1154EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertCompressed(Index row, Index col)
1155{
1156 eigen_assert(isCompressed());
1157
1158 const Index outer = IsRowMajor ? row : col;
1159 const Index inner = IsRowMajor ? col : row;
1160
1161 Index previousOuter = outer;
1162 if (m_outerIndex[outer+1]==0)
1163 {
1164 // we start a new inner vector
1165 while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
1166 {
1167 m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
1168 --previousOuter;
1169 }
1170 m_outerIndex[outer+1] = m_outerIndex[outer];
1171 }
1172
1173 // here we have to handle the tricky case where the outerIndex array
1174 // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
1175 // the 2nd inner vector...
1176 bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
1177 && (size_t(m_outerIndex[outer+1]) == m_data.size());
1178
1179 size_t startId = m_outerIndex[outer];
1180 // FIXME let's make sure sizeof(long int) == sizeof(size_t)
1181 size_t p = m_outerIndex[outer+1];
1182 ++m_outerIndex[outer+1];
1183
1184 double reallocRatio = 1;
1185 if (m_data.allocatedSize()<=m_data.size())
1186 {
1187 // if there is no preallocated memory, let's reserve a minimum of 32 elements
1188 if (m_data.size()==0)
1189 {
1190 m_data.reserve(32);
1191 }
1192 else
1193 {
1194 // we need to reallocate the data, to reduce multiple reallocations
1195 // we use a smart resize algorithm based on the current filling ratio
1196 // in addition, we use double to avoid integers overflows
1197 double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
1198 reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
1199 // furthermore we bound the realloc ratio to:
1200 // 1) reduce multiple minor realloc when the matrix is almost filled
1201 // 2) avoid to allocate too much memory when the matrix is almost empty
1202 reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
1203 }
1204 }
1205 m_data.resize(m_data.size()+1,reallocRatio);
1206
1207 if (!isLastVec)
1208 {
1209 if (previousOuter==-1)
1210 {
1211 // oops wrong guess.
1212 // let's correct the outer offsets
1213 for (Index k=0; k<=(outer+1); ++k)
1214 m_outerIndex[k] = 0;
1215 Index k=outer+1;
1216 while(m_outerIndex[k]==0)
1217 m_outerIndex[k++] = 1;
1218 while (k<=m_outerSize && m_outerIndex[k]!=0)
1219 m_outerIndex[k++]++;
1220 p = 0;
1221 --k;
1222 k = m_outerIndex[k]-1;
1223 while (k>0)
1224 {
1225 m_data.index(k) = m_data.index(k-1);
1226 m_data.value(k) = m_data.value(k-1);
1227 k--;
1228 }
1229 }
1230 else
1231 {
1232 // we are not inserting into the last inner vec
1233 // update outer indices:
1234 Index j = outer+2;
1235 while (j<=m_outerSize && m_outerIndex[j]!=0)
1236 m_outerIndex[j++]++;
1237 --j;
1238 // shift data of last vecs:
1239 Index k = m_outerIndex[j]-1;
1240 while (k>=Index(p))
1241 {
1242 m_data.index(k) = m_data.index(k-1);
1243 m_data.value(k) = m_data.value(k-1);
1244 k--;
1245 }
1246 }
1247 }
1248
1249 while ( (p > startId) && (m_data.index(p-1) > inner) )
1250 {
1251 m_data.index(p) = m_data.index(p-1);
1252 m_data.value(p) = m_data.value(p-1);
1253 --p;
1254 }
1255
1256 m_data.index(p) = inner;
1257 return (m_data.value(p) = 0);
1258}
1259
1260} // end namespace Eigen
1261
1262#endif // EIGEN_SPARSEMATRIX_H
static const ConstantReturnType Constant(Index rows, Index cols, const Scalar &value)
Definition CwiseNullaryOp.h:179
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition Diagonal.h:66
A matrix or vector expression mapping an existing array of data.
Definition Map.h:106
Sparse matrix.
Definition MappedSparseMatrix.h:33
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:129
Base class of any sparse matrices or sparse expressions.
Definition SparseMatrixBase.h:34
Index size() const
Definition SparseMatrixBase.h:165
ColXpr col(Index i)
Definition SparseMatrixBase.h:733
RowXpr row(Index i)
Definition SparseMatrixBase.h:750
A versatible sparse matrix representation.
Definition SparseMatrix.h:87
Index cols() const
Definition SparseMatrix.h:121
Scalar * valuePtr()
Definition SparseMatrix.h:135
Index nonZeros() const
Definition SparseMatrix.h:246
Index innerSize() const
Definition SparseMatrix.h:124
const Index * innerIndexPtr() const
Definition SparseMatrix.h:140
const Index * innerNonZeroPtr() const
Definition SparseMatrix.h:158
void reserve(const SizesType &reserveSizes)
void prune(const KeepFunc &keep=KeepFunc())
Definition SparseMatrix.h:503
void setIdentity()
Definition SparseMatrix.h:696
void swap(SparseMatrix &other)
Definition SparseMatrix.h:684
SparseMatrix(Index rows, Index cols)
Definition SparseMatrix.h:637
const Index * outerIndexPtr() const
Definition SparseMatrix.h:149
void setZero()
Definition SparseMatrix.h:237
Index * innerIndexPtr()
Definition SparseMatrix.h:144
bool isCompressed() const
Definition SparseMatrix.h:116
void setFromTriplets(const InputIterators &begin, const InputIterators &end)
Definition SparseMatrix.h:1014
void makeCompressed()
Definition SparseMatrix.h:449
void reserve(Index reserveSize)
Definition SparseMatrix.h:256
void uncompress()
Definition SparseMatrix.h:478
SparseMatrix(const SparseMatrix &other)
Definition SparseMatrix.h:665
SparseMatrix()
Definition SparseMatrix.h:629
void conservativeResize(Index rows, Index cols)
Definition SparseMatrix.h:532
Scalar & coeffRef(Index row, Index col)
Definition SparseMatrix.h:189
void prune(const Scalar &reference, const RealScalar &epsilon=NumTraits< RealScalar >::dummy_precision())
Definition SparseMatrix.h:490
Index * innerNonZeroPtr()
Definition SparseMatrix.h:162
const Scalar * valuePtr() const
Definition SparseMatrix.h:131
SparseMatrix(const SparseMatrixBase< OtherDerived > &other)
Definition SparseMatrix.h:646
~SparseMatrix()
Definition SparseMatrix.h:786
Index rows() const
Definition SparseMatrix.h:119
void resize(Index rows, Index cols)
Definition SparseMatrix.h:596
Index outerSize() const
Definition SparseMatrix.h:126
SparseMatrix(const ReturnByValue< OtherDerived > &other)
Copy constructor with in-place evaluation.
Definition SparseMatrix.h:674
SparseMatrix(const SparseSelfAdjointView< OtherDerived, UpLo > &other)
Definition SparseMatrix.h:657
const Diagonal< const SparseMatrix > diagonal() const
Definition SparseMatrix.h:626
Scalar coeff(Index row, Index col) const
Definition SparseMatrix.h:171
Index * outerIndexPtr()
Definition SparseMatrix.h:153
Scalar & insert(Index row, Index col)
Definition SparseMatrix.h:220
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
Definition SparseSelfAdjointView.h:51
@ RowMajor
Definition Constants.h:266
@ ColMajor
Definition Constants.h:264
const unsigned int LvalueBit
Definition Constants.h:131
const unsigned int RowMajorBit
Definition Constants.h:53
Definition LDLT.h:18
Derived & derived()
Definition EigenBase.h:34