Eigen  3.2.10
 
Loading...
Searching...
No Matches
BiCGSTAB.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_BICGSTAB_H
12#define EIGEN_BICGSTAB_H
13
14namespace Eigen {
15
16namespace internal {
17
28template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
29bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
30 const Preconditioner& precond, int& iters,
31 typename Dest::RealScalar& tol_error)
32{
33 using std::sqrt;
34 using std::abs;
35 typedef typename Dest::RealScalar RealScalar;
36 typedef typename Dest::Scalar Scalar;
37 typedef Matrix<Scalar,Dynamic,1> VectorType;
38 RealScalar tol = tol_error;
39 int maxIters = iters;
40
41 int n = mat.cols();
42 VectorType r = rhs - mat * x;
43 VectorType r0 = r;
44
45 RealScalar r0_sqnorm = r0.squaredNorm();
46 RealScalar rhs_sqnorm = rhs.squaredNorm();
47 if(rhs_sqnorm == 0)
48 {
49 x.setZero();
50 return true;
51 }
52 Scalar rho = 1;
53 Scalar alpha = 1;
54 Scalar w = 1;
55
56 VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
57 VectorType y(n), z(n);
58 VectorType kt(n), ks(n);
59
60 VectorType s(n), t(n);
61
62 RealScalar tol2 = tol*tol;
63 RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
64 int i = 0;
65 int restarts = 0;
66
67 while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
68 {
69 Scalar rho_old = rho;
70
71 rho = r0.dot(r);
72 if (abs(rho) < eps2*r0_sqnorm)
73 {
74 // The new residual vector became too orthogonal to the arbitrarily choosen direction r0
75 // Let's restart with a new r0:
76 r0 = r;
77 rho = r0_sqnorm = r.squaredNorm();
78 if(restarts++ == 0)
79 i = 0;
80 }
81 Scalar beta = (rho/rho_old) * (alpha / w);
82 p = r + beta * (p - w * v);
83
84 y = precond.solve(p);
85
86 v.noalias() = mat * y;
87
88 alpha = rho / r0.dot(v);
89 s = r - alpha * v;
90
91 z = precond.solve(s);
92 t.noalias() = mat * z;
93
94 RealScalar tmp = t.squaredNorm();
95 if(tmp>RealScalar(0))
96 w = t.dot(s) / tmp;
97 else
98 w = Scalar(0);
99 x += alpha * y + w * z;
100 r = s - w * t;
101 ++i;
102 }
103 tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
104 iters = i;
105 return true;
106}
107
108}
109
110template< typename _MatrixType,
112class BiCGSTAB;
113
114namespace internal {
115
116template< typename _MatrixType, typename _Preconditioner>
117struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
118{
119 typedef _MatrixType MatrixType;
120 typedef _Preconditioner Preconditioner;
121};
122
123}
124
158template< typename _MatrixType, typename _Preconditioner>
159class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
160{
162 using Base::mp_matrix;
163 using Base::m_error;
164 using Base::m_iterations;
165 using Base::m_info;
166 using Base::m_isInitialized;
167public:
168 typedef _MatrixType MatrixType;
169 typedef typename MatrixType::Scalar Scalar;
170 typedef typename MatrixType::Index Index;
171 typedef typename MatrixType::RealScalar RealScalar;
172 typedef _Preconditioner Preconditioner;
173
174public:
175
177 BiCGSTAB() : Base() {}
178
189 template<typename MatrixDerived>
190 explicit BiCGSTAB(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
191
192 ~BiCGSTAB() {}
193
199 template<typename Rhs,typename Guess>
200 inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
201 solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
202 {
203 eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
204 eigen_assert(Base::rows()==b.rows()
205 && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
206 return internal::solve_retval_with_guess
207 <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
208 }
209
211 template<typename Rhs,typename Dest>
212 void _solveWithGuess(const Rhs& b, Dest& x) const
213 {
214 bool failed = false;
215 for(int j=0; j<b.cols(); ++j)
216 {
217 m_iterations = Base::maxIterations();
218 m_error = Base::m_tolerance;
219
220 typename Dest::ColXpr xj(x,j);
221 if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
222 failed = true;
223 }
224 m_info = failed ? NumericalIssue
225 : m_error <= Base::m_tolerance ? Success
227 m_isInitialized = true;
228 }
229
231 template<typename Rhs,typename Dest>
232 void _solve(const Rhs& b, Dest& x) const
233 {
234// x.setZero();
235 x = b;
236 _solveWithGuess(b,x);
237 }
238
239protected:
240
241};
242
243
244namespace internal {
245
246 template<typename _MatrixType, typename _Preconditioner, typename Rhs>
247struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
248 : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
249{
250 typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
251 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
252
253 template<typename Dest> void evalTo(Dest& dst) const
254 {
255 dec()._solve(rhs(),dst);
256 }
257};
258
259} // end namespace internal
260
261} // end namespace Eigen
262
263#endif // EIGEN_BICGSTAB_H
A bi conjugate gradient stabilized solver for sparse square problems.
Definition BiCGSTAB.h:160
BiCGSTAB(const EigenBase< MatrixDerived > &A)
Definition BiCGSTAB.h:190
BiCGSTAB()
Definition BiCGSTAB.h:177
const internal::solve_retval_with_guess< BiCGSTAB, Rhs, Guess > solveWithGuess(const MatrixBase< Rhs > &b, const Guess &x0) const
Definition BiCGSTAB.h:201
A preconditioner based on the digonal entries.
Definition BasicPreconditioners.h:34
int maxIterations() const
Definition IterativeSolverBase.h:141
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
@ NoConvergence
Definition Constants.h:380
@ NumericalIssue
Definition Constants.h:378
@ Success
Definition Constants.h:376
Definition LDLT.h:18
Definition EigenBase.h:27