StableNorm.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_STABLENORM_H
11#define EIGEN_STABLENORM_H
12
13namespace Eigen {
14
15namespace internal {
16
17template<typename ExpressionType, typename Scalar>
18inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
19{
20 Scalar max = bl.cwiseAbs().maxCoeff();
21 if (max>scale)
22 {
23 ssq = ssq * abs2(scale/max);
24 scale = max;
25 invScale = Scalar(1)/scale;
26 }
27 // TODO if the max is much much smaller than the current scale,
28 // then we can neglect this sub vector
29 ssq += (bl*invScale).squaredNorm();
30}
31}
32
43template<typename Derived>
46{
47 using std::min;
48 const Index blockSize = 4096;
49 RealScalar scale(0);
50 RealScalar invScale(1);
51 RealScalar ssq(0); // sum of square
52 enum {
53 Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
54 };
55 Index n = size();
56 Index bi = internal::first_aligned(derived());
57 if (bi>0)
58 internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
59 for (; bi<n; bi+=blockSize)
60 internal::stable_norm_kernel(this->segment(bi,(min)(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
61 return scale * internal::sqrt(ssq);
62}
63
73template<typename Derived>
76{
77 using std::pow;
78 using std::min;
79 using std::max;
80 static bool initialized = false;
81 static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
82 if(!initialized)
83 {
84 int ibeta, it, iemin, iemax, iexp;
85 RealScalar abig, eps;
86 // This program calculates the machine-dependent constants
87 // bl, b2, slm, s2m, relerr overfl
88 // from the "basic" machine-dependent numbers
89 // ibeta, it, iemin, iemax, rbig.
90 // The following define the basic machine-dependent constants.
91 // For portability, the PORT subprograms "ilmaeh" and "rlmach"
92 // are used. For any specific computer, each of the assignment
93 // statements can be replaced
94 ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
95 it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
96 iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
97 iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
98 rbig = (std::numeric_limits<RealScalar>::max)(); // largest floating-point number
99
100 iexp = -((1-iemin)/2);
101 b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange
102 iexp = (iemax + 1 - it)/2;
103 b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange
104
105 iexp = (2-iemin)/2;
106 s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range
107 iexp = - ((iemax+it)/2);
108 s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range
109
110 overfl = rbig*s2m; // overflow boundary for abig
111 eps = RealScalar(pow(double(ibeta), 1-it));
112 relerr = internal::sqrt(eps); // tolerance for neglecting asml
113 abig = RealScalar(1.0/eps - 1.0);
114 initialized = true;
115 }
116 Index n = size();
117 RealScalar ab2 = b2 / RealScalar(n);
118 RealScalar asml = RealScalar(0);
119 RealScalar amed = RealScalar(0);
120 RealScalar abig = RealScalar(0);
121 for(Index j=0; j<n; ++j)
122 {
123 RealScalar ax = internal::abs(coeff(j));
124 if(ax > ab2) abig += internal::abs2(ax*s2m);
125 else if(ax < b1) asml += internal::abs2(ax*s1m);
126 else amed += internal::abs2(ax);
127 }
128 if(abig > RealScalar(0))
129 {
130 abig = internal::sqrt(abig);
131 if(abig > overfl)
132 {
133 return rbig;
134 }
135 if(amed > RealScalar(0))
136 {
137 abig = abig/s2m;
138 amed = internal::sqrt(amed);
139 }
140 else
141 return abig/s2m;
142 }
143 else if(asml > RealScalar(0))
144 {
145 if (amed > RealScalar(0))
146 {
147 abig = internal::sqrt(amed);
148 amed = internal::sqrt(asml) / s1m;
149 }
150 else
151 return internal::sqrt(asml)/s1m;
152 }
153 else
154 return internal::sqrt(amed);
155 asml = (min)(abig, amed);
156 abig = (max)(abig, amed);
157 if(asml <= abig*relerr)
158 return abig;
159 else
160 return abig * internal::sqrt(RealScalar(1) + internal::abs2(asml/abig));
161}
162
168template<typename Derived>
171{
172 return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
173}
174
175} // end namespace Eigen
176
177#endif // EIGEN_STABLENORM_H
internal::traits< Derived >::Index Index
The type of indices.
Definition DenseBase.h:51
SegmentReturnType head(Index size)
Definition VectorBlock.h:143
SegmentReturnType segment(Index start, Index size)
Definition VectorBlock.h:111
@ Flags
Definition DenseBase.h:152
internal::add_const_on_value_type< typenameinternal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type forceAlignedAccessIf() const
Definition ForceAlignedAccess.h:128
RealScalar stableNorm() const
Definition StableNorm.h:45
RealScalar hypotNorm() const
Definition StableNorm.h:170
const CwiseUnaryOp< internal::scalar_abs_op< Scalar >, const Derived > cwiseAbs() const
Definition MatrixBase.h:22
RealScalar blueNorm() const
Definition StableNorm.h:75
const unsigned int DirectAccessBit
Definition Constants.h:137
const unsigned int AlignedBit
Definition Constants.h:142
Definition LDLT.h:18
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition NumTraits.h:89