Inverse.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_INVERSE_H
11#define EIGEN_INVERSE_H
12
13namespace Eigen {
14
15namespace internal {
16
17/**********************************
18*** General case implementation ***
19**********************************/
20
21template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
22struct compute_inverse
23{
24 static inline void run(const MatrixType& matrix, ResultType& result)
25 {
26 result = matrix.partialPivLu().inverse();
27 }
28};
29
30template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
31struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
32
33/****************************
34*** Size 1 implementation ***
35****************************/
36
37template<typename MatrixType, typename ResultType>
38struct compute_inverse<MatrixType, ResultType, 1>
39{
40 static inline void run(const MatrixType& matrix, ResultType& result)
41 {
42 typedef typename MatrixType::Scalar Scalar;
43 result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
44 }
45};
46
47template<typename MatrixType, typename ResultType>
48struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
49{
50 static inline void run(
51 const MatrixType& matrix,
52 const typename MatrixType::RealScalar& absDeterminantThreshold,
53 ResultType& result,
54 typename ResultType::Scalar& determinant,
55 bool& invertible
56 )
57 {
58 determinant = matrix.coeff(0,0);
59 invertible = abs(determinant) > absDeterminantThreshold;
60 if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
61 }
62};
63
64/****************************
65*** Size 2 implementation ***
66****************************/
67
68template<typename MatrixType, typename ResultType>
69inline void compute_inverse_size2_helper(
70 const MatrixType& matrix, const typename ResultType::Scalar& invdet,
71 ResultType& result)
72{
73 result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
74 result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
75 result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
76 result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
77}
78
79template<typename MatrixType, typename ResultType>
80struct compute_inverse<MatrixType, ResultType, 2>
81{
82 static inline void run(const MatrixType& matrix, ResultType& result)
83 {
84 typedef typename ResultType::Scalar Scalar;
85 const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
86 compute_inverse_size2_helper(matrix, invdet, result);
87 }
88};
89
90template<typename MatrixType, typename ResultType>
91struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
92{
93 static inline void run(
94 const MatrixType& matrix,
95 const typename MatrixType::RealScalar& absDeterminantThreshold,
96 ResultType& inverse,
97 typename ResultType::Scalar& determinant,
98 bool& invertible
99 )
100 {
101 typedef typename ResultType::Scalar Scalar;
102 determinant = matrix.determinant();
103 invertible = abs(determinant) > absDeterminantThreshold;
104 if(!invertible) return;
105 const Scalar invdet = Scalar(1) / determinant;
106 compute_inverse_size2_helper(matrix, invdet, inverse);
107 }
108};
109
110/****************************
111*** Size 3 implementation ***
112****************************/
113
114template<typename MatrixType, int i, int j>
115inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
116{
117 enum {
118 i1 = (i+1) % 3,
119 i2 = (i+2) % 3,
120 j1 = (j+1) % 3,
121 j2 = (j+2) % 3
122 };
123 return m.coeff(i1, j1) * m.coeff(i2, j2)
124 - m.coeff(i1, j2) * m.coeff(i2, j1);
125}
126
127template<typename MatrixType, typename ResultType>
128inline void compute_inverse_size3_helper(
129 const MatrixType& matrix,
130 const typename ResultType::Scalar& invdet,
131 const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
132 ResultType& result)
133{
134 result.row(0) = cofactors_col0 * invdet;
135 result.coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
136 result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
137 result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
138 result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
139 result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
140 result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
141}
142
143template<typename MatrixType, typename ResultType>
144struct compute_inverse<MatrixType, ResultType, 3>
145{
146 static inline void run(const MatrixType& matrix, ResultType& result)
147 {
148 typedef typename ResultType::Scalar Scalar;
149 Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
150 cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
151 cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
152 cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
153 const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
154 const Scalar invdet = Scalar(1) / det;
155 compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
156 }
157};
158
159template<typename MatrixType, typename ResultType>
160struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
161{
162 static inline void run(
163 const MatrixType& matrix,
164 const typename MatrixType::RealScalar& absDeterminantThreshold,
165 ResultType& inverse,
166 typename ResultType::Scalar& determinant,
167 bool& invertible
168 )
169 {
170 typedef typename ResultType::Scalar Scalar;
171 Matrix<Scalar,3,1> cofactors_col0;
172 cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
173 cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
174 cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
175 determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
176 invertible = abs(determinant) > absDeterminantThreshold;
177 if(!invertible) return;
178 const Scalar invdet = Scalar(1) / determinant;
179 compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
180 }
181};
182
183/****************************
184*** Size 4 implementation ***
185****************************/
186
187template<typename Derived>
188inline const typename Derived::Scalar general_det3_helper
189(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
190{
191 return matrix.coeff(i1,j1)
192 * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
193}
194
195template<typename MatrixType, int i, int j>
196inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
197{
198 enum {
199 i1 = (i+1) % 4,
200 i2 = (i+2) % 4,
201 i3 = (i+3) % 4,
202 j1 = (j+1) % 4,
203 j2 = (j+2) % 4,
204 j3 = (j+3) % 4
205 };
206 return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
207 + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
208 + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
209}
210
211template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
212struct compute_inverse_size4
213{
214 static void run(const MatrixType& matrix, ResultType& result)
215 {
216 result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
217 result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
218 result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix);
219 result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
220 result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix);
221 result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
222 result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix);
223 result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
224 result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
225 result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix);
226 result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
227 result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix);
228 result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
229 result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix);
230 result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
231 result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix);
232 result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
233 }
234};
235
236template<typename MatrixType, typename ResultType>
237struct compute_inverse<MatrixType, ResultType, 4>
238 : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
239 MatrixType, ResultType>
240{
241};
242
243template<typename MatrixType, typename ResultType>
244struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
245{
246 static inline void run(
247 const MatrixType& matrix,
248 const typename MatrixType::RealScalar& absDeterminantThreshold,
249 ResultType& inverse,
250 typename ResultType::Scalar& determinant,
251 bool& invertible
252 )
253 {
254 determinant = matrix.determinant();
255 invertible = abs(determinant) > absDeterminantThreshold;
256 if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
257 }
258};
259
260/*************************
261*** MatrixBase methods ***
262*************************/
263
264template<typename MatrixType>
265struct traits<inverse_impl<MatrixType> >
266{
267 typedef typename MatrixType::PlainObject ReturnType;
268};
269
270template<typename MatrixType>
271struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
272{
273 typedef typename MatrixType::Index Index;
274 typedef typename internal::eval<MatrixType>::type MatrixTypeNested;
275 typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
276 MatrixTypeNested m_matrix;
277
278 inverse_impl(const MatrixType& matrix)
279 : m_matrix(matrix)
280 {}
281
282 inline Index rows() const { return m_matrix.rows(); }
283 inline Index cols() const { return m_matrix.cols(); }
284
285 template<typename Dest> inline void evalTo(Dest& dst) const
286 {
287 const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime);
288 EIGEN_ONLY_USED_FOR_DEBUG(Size);
289 eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst)))
290 && "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
291
292 compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst);
293 }
294};
295
296} // end namespace internal
297
315template<typename Derived>
316inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const
317{
318 EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
319 eigen_assert(rows() == cols());
320 return internal::inverse_impl<Derived>(derived());
321}
322
336 * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
337 * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
338 *
339 * \sa inverse(), computeInverseWithCheck()
340 */
341template<typename Derived>
342template<typename ResultType>
344 ResultType& inverse,
345 typename ResultType::Scalar& determinant,
346 bool& invertible,
347 const RealScalar& absDeterminantThreshold
348 ) const
349{
350 // i'd love to put some static assertions there, but SFINAE means that they have no effect...
351 eigen_assert(rows() == cols());
352 // for 2x2, it's worth giving a chance to avoid evaluating.
353 // for larger sizes, evaluating has negligible cost and limits code size.
354 typedef typename internal::conditional<
356 typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type,
358 >::type MatrixType;
359 internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
360 (derived(), absDeterminantThreshold, inverse, determinant, invertible);
361}
362
380template<typename Derived>
381template<typename ResultType>
383 ResultType& inverse,
384 bool& invertible,
385 const RealScalar& absDeterminantThreshold
386 ) const
387{
388 RealScalar determinant;
389 // i'd love to put some static assertions there, but SFINAE means that they have no effect...
390 eigen_assert(rows() == cols());
391 computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
392}
393
394} // end namespace Eigen
395
396#endif // EIGEN_INVERSE_H
void computeInverseWithCheck(ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
Definition Inverse.h:382
const internal::inverse_impl< Derived > inverse() const
Definition Inverse.h:316
void computeInverseAndDetWithCheck(ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
Definition Inverse.h:343
Matrix< typename internal::traits< MatrixWrapper< ExpressionType > >::Scalar, internal::traits< MatrixWrapper< ExpressionType > >::RowsAtCompileTime, internal::traits< MatrixWrapper< ExpressionType > >::ColsAtCompileTime, AutoAlign|(internal::traits< MatrixWrapper< ExpressionType > >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< MatrixWrapper< ExpressionType > >::MaxRowsAtCompileTime, internal::traits< MatrixWrapper< ExpressionType > >::MaxColsAtCompileTime > PlainObject
Definition MatrixBase.h:115
Definition LDLT.h:18