FullPivLU.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_LU_H
11#define EIGEN_LU_H
12
13namespace Eigen {
14
45template<typename _MatrixType> class FullPivLU
46{
47 public:
48 typedef _MatrixType MatrixType;
49 enum {
50 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
51 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
52 Options = MatrixType::Options,
53 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
54 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
55 };
56 typedef typename MatrixType::Scalar Scalar;
57 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
58 typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
59 typedef typename MatrixType::Index Index;
60 typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
61 typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
64
71 FullPivLU();
72
79 FullPivLU(Index rows, Index cols);
80
86 FullPivLU(const MatrixType& matrix);
87
95 FullPivLU& compute(const MatrixType& matrix);
96
103 inline const MatrixType& matrixLU() const
104 {
105 eigen_assert(m_isInitialized && "LU is not initialized.");
106 return m_lu;
107 }
108
116 inline Index nonzeroPivots() const
117 {
118 eigen_assert(m_isInitialized && "LU is not initialized.");
119 return m_nonzero_pivots;
120 }
121
125 RealScalar maxPivot() const { return m_maxpivot; }
126
131 inline const PermutationPType& permutationP() const
132 {
133 eigen_assert(m_isInitialized && "LU is not initialized.");
134 return m_p;
135 }
136
141 inline const PermutationQType& permutationQ() const
142 {
143 eigen_assert(m_isInitialized && "LU is not initialized.");
144 return m_q;
145 }
146
161 inline const internal::kernel_retval<FullPivLU> kernel() const
162 {
163 eigen_assert(m_isInitialized && "LU is not initialized.");
164 return internal::kernel_retval<FullPivLU>(*this);
165 }
166
186 inline const internal::image_retval<FullPivLU>
187 image(const MatrixType& originalMatrix) const
188 {
189 eigen_assert(m_isInitialized && "LU is not initialized.");
190 return internal::image_retval<FullPivLU>(*this, originalMatrix);
191 }
192
212 template<typename Rhs>
213 inline const internal::solve_retval<FullPivLU, Rhs>
214 solve(const MatrixBase<Rhs>& b) const
215 {
216 eigen_assert(m_isInitialized && "LU is not initialized.");
217 return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived());
218 }
219
235 typename internal::traits<MatrixType>::Scalar determinant() const;
236
254 FullPivLU& setThreshold(const RealScalar& threshold)
255 {
256 m_usePrescribedThreshold = true;
257 m_prescribedThreshold = threshold;
258 return *this;
259 }
260
270 {
271 m_usePrescribedThreshold = false;
272 return *this;
273 }
274
279 RealScalar threshold() const
280 {
281 eigen_assert(m_isInitialized || m_usePrescribedThreshold);
282 return m_usePrescribedThreshold ? m_prescribedThreshold
283 // this formula comes from experimenting (see "LU precision tuning" thread on the list)
284 // and turns out to be identical to Higham's formula used already in LDLt.
285 : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
286 }
287
294 inline Index rank() const
295 {
296 eigen_assert(m_isInitialized && "LU is not initialized.");
297 RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold();
298 Index result = 0;
299 for(Index i = 0; i < m_nonzero_pivots; ++i)
300 result += (internal::abs(m_lu.coeff(i,i)) > premultiplied_threshold);
301 return result;
302 }
303
310 inline Index dimensionOfKernel() const
311 {
312 eigen_assert(m_isInitialized && "LU is not initialized.");
313 return cols() - rank();
314 }
315
323 inline bool isInjective() const
324 {
325 eigen_assert(m_isInitialized && "LU is not initialized.");
326 return rank() == cols();
327 }
328
336 inline bool isSurjective() const
337 {
338 eigen_assert(m_isInitialized && "LU is not initialized.");
339 return rank() == rows();
340 }
341
348 inline bool isInvertible() const
349 {
350 eigen_assert(m_isInitialized && "LU is not initialized.");
351 return isInjective() && (m_lu.rows() == m_lu.cols());
352 }
353
361 inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const
362 {
363 eigen_assert(m_isInitialized && "LU is not initialized.");
364 eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
365 return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType>
366 (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
367 }
368
370
371 inline Index rows() const { return m_lu.rows(); }
372 inline Index cols() const { return m_lu.cols(); }
373
374 protected:
375 MatrixType m_lu;
376 PermutationPType m_p;
377 PermutationQType m_q;
378 IntColVectorType m_rowsTranspositions;
379 IntRowVectorType m_colsTranspositions;
380 Index m_det_pq, m_nonzero_pivots;
381 RealScalar m_maxpivot, m_prescribedThreshold;
382 bool m_isInitialized, m_usePrescribedThreshold;
383};
384
385template<typename MatrixType>
387 : m_isInitialized(false), m_usePrescribedThreshold(false)
388{
389}
390
391template<typename MatrixType>
392FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
393 : m_lu(rows, cols),
394 m_p(rows),
395 m_q(cols),
396 m_rowsTranspositions(rows),
397 m_colsTranspositions(cols),
398 m_isInitialized(false),
399 m_usePrescribedThreshold(false)
400{
401}
402
403template<typename MatrixType>
404FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
405 : m_lu(matrix.rows(), matrix.cols()),
406 m_p(matrix.rows()),
407 m_q(matrix.cols()),
408 m_rowsTranspositions(matrix.rows()),
409 m_colsTranspositions(matrix.cols()),
410 m_isInitialized(false),
411 m_usePrescribedThreshold(false)
412{
413 compute(matrix);
414}
415
416template<typename MatrixType>
418{
419 m_isInitialized = true;
420 m_lu = matrix;
421
422 const Index size = matrix.diagonalSize();
423 const Index rows = matrix.rows();
424 const Index cols = matrix.cols();
425
426 // will store the transpositions, before we accumulate them at the end.
427 // can't accumulate on-the-fly because that will be done in reverse order for the rows.
428 m_rowsTranspositions.resize(matrix.rows());
429 m_colsTranspositions.resize(matrix.cols());
430 Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
431
432 m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
433 m_maxpivot = RealScalar(0);
434
435 for(Index k = 0; k < size; ++k)
436 {
437 // First, we need to find the pivot.
438
439 // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
440 Index row_of_biggest_in_corner, col_of_biggest_in_corner;
441 RealScalar biggest_in_corner;
442 biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
443 .cwiseAbs()
444 .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
445 row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
446 col_of_biggest_in_corner += k; // need to add k to them.
447
448 if(biggest_in_corner==RealScalar(0))
449 {
450 // before exiting, make sure to initialize the still uninitialized transpositions
451 // in a sane state without destroying what we already have.
452 m_nonzero_pivots = k;
453 for(Index i = k; i < size; ++i)
454 {
455 m_rowsTranspositions.coeffRef(i) = i;
456 m_colsTranspositions.coeffRef(i) = i;
457 }
458 break;
459 }
460
461 if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner;
462
463 // Now that we've found the pivot, we need to apply the row/col swaps to
464 // bring it to the location (k,k).
465
466 m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
467 m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
468 if(k != row_of_biggest_in_corner) {
469 m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
470 ++number_of_transpositions;
471 }
472 if(k != col_of_biggest_in_corner) {
473 m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
474 ++number_of_transpositions;
475 }
476
477 // Now that the pivot is at the right location, we update the remaining
478 // bottom-right corner by Gaussian elimination.
479
480 if(k<rows-1)
481 m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
482 if(k<size-1)
483 m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
484 }
485
486 // the main loop is over, we still have to accumulate the transpositions to find the
487 // permutations P and Q
488
489 m_p.setIdentity(rows);
490 for(Index k = size-1; k >= 0; --k)
491 m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
492
493 m_q.setIdentity(cols);
494 for(Index k = 0; k < size; ++k)
495 m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
496
497 m_det_pq = (number_of_transpositions%2) ? -1 : 1;
498 return *this;
499}
500
501template<typename MatrixType>
502typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
503{
504 eigen_assert(m_isInitialized && "LU is not initialized.");
505 eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
506 return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
507}
508
512template<typename MatrixType>
514{
515 eigen_assert(m_isInitialized && "LU is not initialized.");
516 const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
517 // LU
518 MatrixType res(m_lu.rows(),m_lu.cols());
519 // FIXME the .toDenseMatrix() should not be needed...
520 res = m_lu.leftCols(smalldim)
521 .template triangularView<UnitLower>().toDenseMatrix()
522 * m_lu.topRows(smalldim)
523 .template triangularView<Upper>().toDenseMatrix();
524
525 // P^{-1}(LU)
526 res = m_p.inverse() * res;
527
528 // (P^{-1}LU)Q^{-1}
529 res = res * m_q.inverse();
530
531 return res;
532}
533
534/********* Implementation of kernel() **************************************************/
535
536namespace internal {
537template<typename _MatrixType>
538struct kernel_retval<FullPivLU<_MatrixType> >
539 : kernel_retval_base<FullPivLU<_MatrixType> >
540{
541 EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
542
543 enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
544 MatrixType::MaxColsAtCompileTime,
545 MatrixType::MaxRowsAtCompileTime)
546 };
547
548 template<typename Dest> void evalTo(Dest& dst) const
549 {
550 const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
551 if(dimker == 0)
552 {
553 // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
554 // avoid crashing/asserting as that depends on floating point calculations. Let's
555 // just return a single column vector filled with zeros.
556 dst.setZero();
557 return;
558 }
559
560 /* Let us use the following lemma:
561 *
562 * Lemma: If the matrix A has the LU decomposition PAQ = LU,
563 * then Ker A = Q(Ker U).
564 *
565 * Proof: trivial: just keep in mind that P, Q, L are invertible.
566 */
567
568 /* Thus, all we need to do is to compute Ker U, and then apply Q.
569 *
570 * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
571 * Thus, the diagonal of U ends with exactly
572 * dimKer zero's. Let us use that to construct dimKer linearly
573 * independent vectors in Ker U.
574 */
575
576 Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
577 RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
578 Index p = 0;
579 for(Index i = 0; i < dec().nonzeroPivots(); ++i)
580 if(internal::abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
581 pivots.coeffRef(p++) = i;
582 eigen_internal_assert(p == rank());
583
584 // we construct a temporaty trapezoid matrix m, by taking the U matrix and
585 // permuting the rows and cols to bring the nonnegligible pivots to the top of
586 // the main diagonal. We need that to be able to apply our triangular solvers.
587 // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
588 Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
589 MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
590 m(dec().matrixLU().block(0, 0, rank(), cols));
591 for(Index i = 0; i < rank(); ++i)
592 {
593 if(i) m.row(i).head(i).setZero();
594 m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
595 }
596 m.block(0, 0, rank(), rank());
597 m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
598 for(Index i = 0; i < rank(); ++i)
599 m.col(i).swap(m.col(pivots.coeff(i)));
600
601 // ok, we have our trapezoid matrix, we can apply the triangular solver.
602 // notice that the math behind this suggests that we should apply this to the
603 // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
604 m.topLeftCorner(rank(), rank())
605 .template triangularView<Upper>().solveInPlace(
606 m.topRightCorner(rank(), dimker)
607 );
608
609 // now we must undo the column permutation that we had applied!
610 for(Index i = rank()-1; i >= 0; --i)
611 m.col(i).swap(m.col(pivots.coeff(i)));
612
613 // see the negative sign in the next line, that's what we were talking about above.
614 for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
615 for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
616 for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
617 }
618};
619
620/***** Implementation of image() *****************************************************/
621
622template<typename _MatrixType>
623struct image_retval<FullPivLU<_MatrixType> >
624 : image_retval_base<FullPivLU<_MatrixType> >
625{
626 EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
627
628 enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
629 MatrixType::MaxColsAtCompileTime,
630 MatrixType::MaxRowsAtCompileTime)
631 };
632
633 template<typename Dest> void evalTo(Dest& dst) const
634 {
635 if(rank() == 0)
636 {
637 // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
638 // avoid crashing/asserting as that depends on floating point calculations. Let's
639 // just return a single column vector filled with zeros.
640 dst.setZero();
641 return;
642 }
643
644 Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
645 RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
646 Index p = 0;
647 for(Index i = 0; i < dec().nonzeroPivots(); ++i)
648 if(internal::abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
649 pivots.coeffRef(p++) = i;
650 eigen_internal_assert(p == rank());
651
652 for(Index i = 0; i < rank(); ++i)
653 dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
654 }
655};
656
657/***** Implementation of solve() *****************************************************/
658
659template<typename _MatrixType, typename Rhs>
660struct solve_retval<FullPivLU<_MatrixType>, Rhs>
661 : solve_retval_base<FullPivLU<_MatrixType>, Rhs>
662{
663 EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs)
664
665 template<typename Dest> void evalTo(Dest& dst) const
666 {
667 /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
668 * So we proceed as follows:
669 * Step 1: compute c = P * rhs.
670 * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
671 * Step 3: replace c by the solution x to Ux = c. May or may not exist.
672 * Step 4: result = Q * c;
673 */
674
675 const Index rows = dec().rows(), cols = dec().cols(),
676 nonzero_pivots = dec().nonzeroPivots();
677 eigen_assert(rhs().rows() == rows);
678 const Index smalldim = (std::min)(rows, cols);
679
680 if(nonzero_pivots == 0)
681 {
682 dst.setZero();
683 return;
684 }
685
686 typename Rhs::PlainObject c(rhs().rows(), rhs().cols());
687
688 // Step 1
689 c = dec().permutationP() * rhs();
690
691 // Step 2
692 dec().matrixLU()
693 .topLeftCorner(smalldim,smalldim)
694 .template triangularView<UnitLower>()
695 .solveInPlace(c.topRows(smalldim));
696 if(rows>cols)
697 {
698 c.bottomRows(rows-cols)
699 -= dec().matrixLU().bottomRows(rows-cols)
700 * c.topRows(cols);
701 }
702
703 // Step 3
704 dec().matrixLU()
705 .topLeftCorner(nonzero_pivots, nonzero_pivots)
706 .template triangularView<Upper>()
707 .solveInPlace(c.topRows(nonzero_pivots));
708
709 // Step 4
710 for(Index i = 0; i < nonzero_pivots; ++i)
711 dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i);
712 for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i)
713 dst.row(dec().permutationQ().indices().coeff(i)).setZero();
714 }
715};
716
717} // end namespace internal
718
719/******* MatrixBase methods *****************************************************************/
720
727template<typename Derived>
733
734} // end namespace Eigen
735
736#endif // EIGEN_LU_H
EvalReturnType eval() const
Definition DenseBase.h:372
LU decomposition of a matrix with complete pivoting, and related features.
Definition FullPivLU.h:46
const internal::image_retval< FullPivLU > image(const MatrixType &originalMatrix) const
Definition FullPivLU.h:187
internal::traits< MatrixType >::Scalar determinant() const
Definition FullPivLU.h:502
const internal::solve_retval< FullPivLU, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition FullPivLU.h:214
FullPivLU()
Default Constructor.
Definition FullPivLU.h:386
MatrixType reconstructedMatrix() const
Definition FullPivLU.h:513
const PermutationQType & permutationQ() const
Definition FullPivLU.h:141
RealScalar maxPivot() const
Definition FullPivLU.h:125
const internal::solve_retval< FullPivLU, typename MatrixType::IdentityReturnType > inverse() const
Definition FullPivLU.h:361
FullPivLU & setThreshold(const RealScalar &threshold)
Definition FullPivLU.h:254
bool isInvertible() const
Definition FullPivLU.h:348
const MatrixType & matrixLU() const
Definition FullPivLU.h:103
bool isInjective() const
Definition FullPivLU.h:323
const internal::kernel_retval< FullPivLU > kernel() const
Definition FullPivLU.h:161
const PermutationPType & permutationP() const
Definition FullPivLU.h:131
FullPivLU & compute(const MatrixType &matrix)
Definition FullPivLU.h:417
Index rank() const
Definition FullPivLU.h:294
Index dimensionOfKernel() const
Definition FullPivLU.h:310
FullPivLU & setThreshold(Default_t)
Definition FullPivLU.h:269
bool isSurjective() const
Definition FullPivLU.h:336
RealScalar threshold() const
Definition FullPivLU.h:279
Index nonzeroPivots() const
Definition FullPivLU.h:116
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
const FullPivLU< PlainObject > fullPivLu() const
Definition FullPivLU.h:729
Permutation matrix.
Definition PermutationMatrix.h:284
Definition LDLT.h:18