ComplexSchur.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Claire Maurice
5// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_COMPLEX_SCHUR_H
13#define EIGEN_COMPLEX_SCHUR_H
14
15#include "./HessenbergDecomposition.h"
16
17namespace Eigen {
18
19namespace internal {
20template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
21}
22
51template<typename _MatrixType> class ComplexSchur
52{
53 public:
54 typedef _MatrixType MatrixType;
55 enum {
56 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
57 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
58 Options = MatrixType::Options,
59 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
60 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
61 };
62
64 typedef typename MatrixType::Scalar Scalar;
65 typedef typename NumTraits<Scalar>::Real RealScalar;
66 typedef typename MatrixType::Index Index;
67
74 typedef std::complex<RealScalar> ComplexScalar;
75
82
94 ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
95 : m_matT(size,size),
96 m_matU(size,size),
97 m_hess(size),
98 m_isInitialized(false),
99 m_matUisUptodate(false)
100 {}
101
111 ComplexSchur(const MatrixType& matrix, bool computeU = true)
112 : m_matT(matrix.rows(),matrix.cols()),
113 m_matU(matrix.rows(),matrix.cols()),
114 m_hess(matrix.rows()),
115 m_isInitialized(false),
116 m_matUisUptodate(false)
117 {
118 compute(matrix, computeU);
119 }
120
136 {
137 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
138 eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
139 return m_matU;
140 }
141
160 {
161 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
162 return m_matT;
163 }
164
184 ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
185
191 {
192 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
193 return m_info;
194 }
195
200 static const int m_maxIterations = 30;
201
202 protected:
203 ComplexMatrixType m_matT, m_matU;
205 ComputationInfo m_info;
206 bool m_isInitialized;
207 bool m_matUisUptodate;
208
209 private:
210 bool subdiagonalEntryIsNeglegible(Index i);
211 ComplexScalar computeShift(Index iu, Index iter);
212 void reduceToTriangularForm(bool computeU);
213 friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
214};
215
219template<typename MatrixType>
220inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
221{
222 RealScalar d = internal::norm1(m_matT.coeff(i,i)) + internal::norm1(m_matT.coeff(i+1,i+1));
223 RealScalar sd = internal::norm1(m_matT.coeff(i+1,i));
224 if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
225 {
226 m_matT.coeffRef(i+1,i) = ComplexScalar(0);
227 return true;
228 }
229 return false;
230}
231
232
234template<typename MatrixType>
235typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
236{
237 if (iter == 10 || iter == 20)
238 {
239 // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
240 return internal::abs(internal::real(m_matT.coeff(iu,iu-1))) + internal::abs(internal::real(m_matT.coeff(iu-1,iu-2)));
241 }
242
243 // compute the shift as one of the eigenvalues of t, the 2x2
244 // diagonal block on the bottom of the active submatrix
245 Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
246 RealScalar normt = t.cwiseAbs().sum();
247 t /= normt; // the normalization by sf is to avoid under/overflow
248
249 ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
250 ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
251 ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
252 ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
253 ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
254 ComplexScalar eival1 = (trace + disc) / RealScalar(2);
255 ComplexScalar eival2 = (trace - disc) / RealScalar(2);
256
257 if(internal::norm1(eival1) > internal::norm1(eival2))
258 eival2 = det / eival1;
259 else
260 eival1 = det / eival2;
261
262 // choose the eigenvalue closest to the bottom entry of the diagonal
263 if(internal::norm1(eival1-t.coeff(1,1)) < internal::norm1(eival2-t.coeff(1,1)))
264 return normt * eival1;
265 else
266 return normt * eival2;
267}
268
269
270template<typename MatrixType>
271ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
272{
273 m_matUisUptodate = false;
274 eigen_assert(matrix.cols() == matrix.rows());
275
276 if(matrix.cols() == 1)
277 {
278 m_matT = matrix.template cast<ComplexScalar>();
279 if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
280 m_info = Success;
281 m_isInitialized = true;
282 m_matUisUptodate = computeU;
283 return *this;
284 }
285
286 internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
287 reduceToTriangularForm(computeU);
288 return *this;
289}
290
291namespace internal {
292
293/* Reduce given matrix to Hessenberg form */
294template<typename MatrixType, bool IsComplex>
295struct complex_schur_reduce_to_hessenberg
296{
297 // this is the implementation for the case IsComplex = true
298 static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
299 {
300 _this.m_hess.compute(matrix);
301 _this.m_matT = _this.m_hess.matrixH();
302 if(computeU) _this.m_matU = _this.m_hess.matrixQ();
303 }
304};
305
306template<typename MatrixType>
307struct complex_schur_reduce_to_hessenberg<MatrixType, false>
308{
309 static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
310 {
311 typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
312 typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
313
314 // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
315 _this.m_hess.compute(matrix);
316 _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
317 if(computeU)
318 {
319 // This may cause an allocation which seems to be avoidable
320 MatrixType Q = _this.m_hess.matrixQ();
321 _this.m_matU = Q.template cast<ComplexScalar>();
322 }
323 }
324};
325
326} // end namespace internal
327
328// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
329template<typename MatrixType>
331{
332 // The matrix m_matT is divided in three parts.
333 // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
334 // Rows il,...,iu is the part we are working on (the active submatrix).
335 // Rows iu+1,...,end are already brought in triangular form.
336 Index iu = m_matT.cols() - 1;
337 Index il;
338 Index iter = 0; // number of iterations we are working on the (iu,iu) element
339 Index totalIter = 0; // number of iterations for whole matrix
340
341 while(true)
342 {
343 // find iu, the bottom row of the active submatrix
344 while(iu > 0)
345 {
346 if(!subdiagonalEntryIsNeglegible(iu-1)) break;
347 iter = 0;
348 --iu;
349 }
350
351 // if iu is zero then we are done; the whole matrix is triangularized
352 if(iu==0) break;
353
354 // if we spent too many iterations, we give up
355 iter++;
356 totalIter++;
357 if(totalIter > m_maxIterations * m_matT.cols()) break;
358
359 // find il, the top row of the active submatrix
360 il = iu-1;
361 while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
362 {
363 --il;
364 }
365
366 /* perform the QR step using Givens rotations. The first rotation
367 creates a bulge; the (il+2,il) element becomes nonzero. This
368 bulge is chased down to the bottom of the active submatrix. */
369
370 ComplexScalar shift = computeShift(iu, iter);
371 JacobiRotation<ComplexScalar> rot;
372 rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
373 m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
374 m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
375 if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
376
377 for(Index i=il+1 ; i<iu ; i++)
378 {
379 rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
380 m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
381 m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
382 m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
383 if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
384 }
385 }
386
387 if(totalIter <= m_maxIterations * m_matT.cols())
388 m_info = Success;
389 else
390 m_info = NoConvergence;
391
392 m_isInitialized = true;
393 m_matUisUptodate = computeU;
394}
395
396} // end namespace Eigen
397
398#endif // EIGEN_COMPLEX_SCHUR_H
Performs a complex Schur decomposition of a real or complex square matrix.
Definition ComplexSchur.h:52
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > ComplexMatrixType
Type for the matrices in the Schur decomposition.
Definition ComplexSchur.h:81
std::complex< RealScalar > ComplexScalar
Complex scalar type for _MatrixType.
Definition ComplexSchur.h:74
const ComplexMatrixType & matrixU() const
Returns the unitary matrix in the Schur decomposition.
Definition ComplexSchur.h:135
ComplexSchur(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Definition ComplexSchur.h:94
MatrixType::Scalar Scalar
Scalar type for matrices of type _MatrixType.
Definition ComplexSchur.h:64
ComplexSchur(const MatrixType &matrix, bool computeU=true)
Constructor; computes Schur decomposition of given matrix.
Definition ComplexSchur.h:111
const ComplexMatrixType & matrixT() const
Returns the triangular matrix in the Schur decomposition.
Definition ComplexSchur.h:159
ComputationInfo info() const
Reports whether previous computation was successful.
Definition ComplexSchur.h:190
static const int m_maxIterations
Maximum number of iterations.
Definition ComplexSchur.h:200
ComplexSchur & compute(const MatrixType &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
Definition ComplexSchur.h:271
Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation.
Definition HessenbergDecomposition.h:58
MatrixHReturnType matrixH() const
Constructs the Hessenberg matrix H in the decomposition.
Definition HessenbergDecomposition.h:260
HessenbergDecomposition & compute(const MatrixType &matrix)
Computes Hessenberg decomposition of given matrix.
Definition HessenbergDecomposition.h:150
HouseholderSequenceType matrixQ() const
Reconstructs the orthogonal matrix Q in the decomposition.
Definition HessenbergDecomposition.h:232
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:129
ComputationInfo
Definition Constants.h:367
@ NoConvergence
Definition Constants.h:373
@ Success
Definition Constants.h:369
Definition LDLT.h:18
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition NumTraits.h:89