ComplexEigenSolver.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Claire Maurice
5// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
13#define EIGEN_COMPLEX_EIGEN_SOLVER_H
14
15#include "./ComplexSchur.h"
16
17namespace Eigen {
18
45template<typename _MatrixType> class ComplexEigenSolver
46{
47 public:
48
50 typedef _MatrixType MatrixType;
51
52 enum {
53 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
54 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
55 Options = MatrixType::Options,
56 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
57 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
58 };
59
61 typedef typename MatrixType::Scalar Scalar;
62 typedef typename NumTraits<Scalar>::Real RealScalar;
63 typedef typename MatrixType::Index Index;
64
71 typedef std::complex<RealScalar> ComplexScalar;
72
78 typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
79
86
93 : m_eivec(),
94 m_eivalues(),
95 m_schur(),
96 m_isInitialized(false),
97 m_eigenvectorsOk(false),
98 m_matX()
99 {}
100
108 : m_eivec(size, size),
109 m_eivalues(size),
110 m_schur(size),
111 m_isInitialized(false),
112 m_eigenvectorsOk(false),
113 m_matX(size, size)
114 {}
115
125 ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
126 : m_eivec(matrix.rows(),matrix.cols()),
127 m_eivalues(matrix.cols()),
128 m_schur(matrix.rows()),
129 m_isInitialized(false),
130 m_eigenvectorsOk(false),
131 m_matX(matrix.rows(),matrix.cols())
132 {
133 compute(matrix, computeEigenvectors);
134 }
135
157 {
158 eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
159 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
160 return m_eivec;
161 }
162
182 {
183 eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
184 return m_eivalues;
185 }
186
211 ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
212
218 {
219 eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
220 return m_schur.info();
221 }
222
223 protected:
224 EigenvectorType m_eivec;
225 EigenvalueType m_eivalues;
227 bool m_isInitialized;
228 bool m_eigenvectorsOk;
229 EigenvectorType m_matX;
230
231 private:
232 void doComputeEigenvectors(RealScalar matrixnorm);
233 void sortEigenvalues(bool computeEigenvectors);
234};
235
236
237template<typename MatrixType>
239{
240 // this code is inspired from Jampack
241 assert(matrix.cols() == matrix.rows());
242
243 // Do a complex Schur decomposition, A = U T U^*
244 // The eigenvalues are on the diagonal of T.
245 m_schur.compute(matrix, computeEigenvectors);
246
247 if(m_schur.info() == Success)
248 {
249 m_eivalues = m_schur.matrixT().diagonal();
250 if(computeEigenvectors)
251 doComputeEigenvectors(matrix.norm());
252 sortEigenvalues(computeEigenvectors);
253 }
254
255 m_isInitialized = true;
256 m_eigenvectorsOk = computeEigenvectors;
257 return *this;
258}
259
260
261template<typename MatrixType>
262void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm)
263{
264 const Index n = m_eivalues.size();
265
266 // Compute X such that T = X D X^(-1), where D is the diagonal of T.
267 // The matrix X is unit triangular.
268 m_matX = EigenvectorType::Zero(n, n);
269 for(Index k=n-1 ; k>=0 ; k--)
270 {
271 m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
272 // Compute X(i,k) using the (i,k) entry of the equation X T = D X
273 for(Index i=k-1 ; i>=0 ; i--)
274 {
275 m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
276 if(k-i-1>0)
277 m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
278 ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
279 if(z==ComplexScalar(0))
280 {
281 // If the i-th and k-th eigenvalue are equal, then z equals 0.
282 // Use a small value instead, to prevent division by zero.
283 internal::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
284 }
285 m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
286 }
287 }
288
289 // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
290 m_eivec.noalias() = m_schur.matrixU() * m_matX;
291 // .. and normalize the eigenvectors
292 for(Index k=0 ; k<n ; k++)
293 {
294 m_eivec.col(k).normalize();
295 }
296}
297
298
299template<typename MatrixType>
300void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
301{
302 const Index n = m_eivalues.size();
303 for (Index i=0; i<n; i++)
304 {
305 Index k;
306 m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
307 if (k != 0)
308 {
309 k += i;
310 std::swap(m_eivalues[k],m_eivalues[i]);
311 if(computeEigenvectors)
312 m_eivec.col(i).swap(m_eivec.col(k));
313 }
314 }
315}
316
317} // end namespace Eigen
318
319#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
Computes eigenvalues and eigenvectors of general complex matrices.
Definition ComplexEigenSolver.h:46
std::complex< RealScalar > ComplexScalar
Complex scalar type for MatrixType.
Definition ComplexEigenSolver.h:71
Matrix< ComplexScalar, ColsAtCompileTime, 1, Options &(~RowMajor), MaxColsAtCompileTime, 1 > EigenvalueType
Type for vector of eigenvalues as returned by eigenvalues().
Definition ComplexEigenSolver.h:78
ComplexEigenSolver(Index size)
Default Constructor with memory preallocation.
Definition ComplexEigenSolver.h:107
MatrixType::Scalar Scalar
Scalar type for matrices of type MatrixType.
Definition ComplexEigenSolver.h:61
ComplexEigenSolver & compute(const MatrixType &matrix, bool computeEigenvectors=true)
Computes eigendecomposition of given matrix.
Definition ComplexEigenSolver.h:238
ComplexEigenSolver()
Default constructor.
Definition ComplexEigenSolver.h:92
const EigenvectorType & eigenvectors() const
Returns the eigenvectors of given matrix.
Definition ComplexEigenSolver.h:156
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > EigenvectorType
Type for matrix of eigenvectors as returned by eigenvectors().
Definition ComplexEigenSolver.h:85
ComputationInfo info() const
Reports whether previous computation was successful.
Definition ComplexEigenSolver.h:217
_MatrixType MatrixType
Synonym for the template parameter _MatrixType.
Definition ComplexEigenSolver.h:50
ComplexEigenSolver(const MatrixType &matrix, bool computeEigenvectors=true)
Constructor; computes eigendecomposition of given matrix.
Definition ComplexEigenSolver.h:125
const EigenvalueType & eigenvalues() const
Returns the eigenvalues of given matrix.
Definition ComplexEigenSolver.h:181
Performs a complex Schur decomposition of a real or complex square matrix.
Definition ComplexSchur.h:52
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:129
ComputationInfo
Definition Constants.h:367
@ RowMajor
Definition Constants.h:259
@ Success
Definition Constants.h:369