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Abstract
In modern world of high performance computing Mr. Kazushige 
Goto has became a legend mostly by his work on the GotoBLAS 
library which is currently the fastest implementation of BLAS 
routines. This paper is an attempt to summarize theoretical and 
practical  approaches  which  were  used  to  develop  high 
performance  BLAS code.  As  it  is  shown here  such  ideas  as 
implementation analysis and efficient memory usage are useful 
for many real world problems although the paper is focused on 
matrix multiplication implementations. 

1. INTRODUCTION

Linear algebra plays important role in scientific applications. Matrices and operations on 
them are frequently used in mathematical modeling for the wide range of physical processes and 
systems. Application areas include physics, electrical engineering, economics, biology, computer 
science, etc.  Considering the importance of the efficiency of the matrix calculations many different 
open source and proprietary libraries were developed by the scientific community. The process of 
development  of  new approaches  does  not  stop,  since  the  hardware  environments  are  changing 
frequently and the most effective solutions are implemented using machine dependent techniques.

Eventually the work of different researchers and teams has resulted in appearance of the 
BLAS application programming interface, which is known as Basic Linear Algebra Subprograms. 
BLAS is thought to be a general interface to linear algebra procedures. Currently there are several 
BLAS  libraries available from various hardware manufacturers and also from the open source 
community.  Such libraries are used on wide range of hardware, from graphics adapters to high 
scale  supercomputers  in  performance  critical  applications  thus  it  is  critical  for  the  library  to 
implement linear algebra routines as efficient as possible.

One of the famous researchers in the area of implementations of linear algebra procedures is 
Kazushige Goto which has developed his version of BLAS library currently known as GotoBLAS.
Nowadays the library outperforms most of the competitors in terms of speed because the code, 
written by  Kazushige Goto is handcrafted for many various hardware architectures.  The basic 
subroutines,  also called “kernels”  are  developed in  assembly language and tailored for specific 
mathematical   applications. There are different versions of code specially made for working with 
symmetric, triangular, quadratic matrices. In 2003  the GotoBLAS code was used by 7 of the 10 
fastest supercomputers in the world. 

While first part of the paper is focused on introduction to BLAS and shows various naive 
implementations the second part explains theoretical and practical concepts behind the fastest linear 
algebra code.



2. BLAS

The  idea  behind  this  term  has  resulted  in  creation  of  the  universal  application  programming 
interface for the developers of applications which use linear algebra [3]. Operations are divided into 
different sets, also called “levels” in BLAS terminology. Three different levels are chosen in such a 
way that higher level operations can be implemented in terms of lower level routines.

Level 1 consists of operations on vectors, such as norm and dot product. 
The general representation of level 1 operations is:

x=ax y

where x and y are vectors and a is a scalar.
The notion implies that result of the operation is placed into the location of the original x vector
Multiplication of vector by scalar is also a Level 1 operation.

Level 2 operations make basis for matrix - vector calculations in form:

y=aAxby

The resulting vector is the product of scalar a ,  matrix A  and vector x  which is added to 
the product of scalar b  and vector y .

Level 3 operations are matrix – matrix calculations:

C=aABbC

where  a and  b are scalars,  and  A ,  B ,  C  are  matrices.  Again,  the result  of  such 
operation is placed into C  location, overwriting the previous data.

Such distribution of various linear algebra operations also allows to define upper bounds for the 
operational complexity for all three levels. Assuming that operations are performed on input data 
with length N the following estimations are valid.

Level Data movements Floating  point 
operations

Example  of  the 
BLAS primitive

Level 1 BLAS O(N) O(N) DDOT

Level 2 BLAS O(N²) O(N²) DGEMV

Level 3 BLAS O(N²) O(N³) DGEMM

Table 1. Three levels of  BLAS operations

Note that order number of each level corresponds to the power of N in the estimation of the floating 
point operations needed to perform such operation. Thus it is easy to think that level 2 routines 
require at worse O(N²) floating point operations to complete.

All subprograms in BLAS ideology are defined using strict notation so that name unique 



implies the operation and data input. 
If the name of the operation is expressed in form as ABC then
A denotes input data prevision such as:

– “S” for single real data
– “D” for double real
– etc.

B part denotes the nature of input data such as 
– “GE” for general matrices
– “SY” for symmetric, etc.

C part defines the operation performed on input data, ie 
– “MM”  is matrix multiplication
– ”MV” is matrix vector multiplication.

Since the basic topic of this paper is matrix - matrix multiplication we will focus mostly on 
routine  named  “DGEMM” which  implies  matrix  multiplication  with  general  matrix  input  with 
double precision.  Examples of other BLAS names are written in the Table 1.

The importance of high speed BLAS implementations is based on fact that many higher 
level problems can be solved using BLAS operations. Thus solution to the bigger problem depends 
on the performance of the lower level operations such as matrix-matrix multiplication. Furthermore, 
it  has  become a  generally  accepted  practice  to  use  GEMM (general  matrix  multiplication)  for 
getting  high  performance  for  other  matrix-matrix  operations  such  as  symmetric  matrix-matrix 
multiply, symmetric rank-k update, symmetric rank-2k update, triangular matrix-matrix multiply, 
and triangular solve with multiple right-hand sides [2].

3. EVOLUTION OF MATRIX MULTIPLICATION ALGORITHMS

Traditionally matrix multiplications were used since the birth of first computers to model systems 
and solve linear equations. The time complexity (O(N³)) for a single matrix – matrix multiplication 
placed great restrictions on the size of input data limiting the usage of implementations to small 
scientific problems. 

The evolution of matrix multiplications advances to the direction of providing better data 
locality of the input data so that various high performance hardware features can be utilized.
A straightforward implementation approach is suffering because of low data locality (Figure 1).

Figure 1. Naive matrix multiplication implementation

The parallelization of such code does not bring a lot of benefits since various functional units must 
access the same data. The cache is also not utilized properly since elements of matrix in the same 
column (row) are always far away from each other. The main problem of this solutions is the row 
major  or column major  placement  of the elements  in both matrices  which requires  jumping in 
memory for iterating elements in the same column or row. 



The  more  efficient  solution  would  be  performing  transposition  of  one  matrix  before 
multiplying (Figure 2)

  Figure 2. Improved naive matrix multiplication implementation

This approach delivers slightly better performance since a part of the row (column) is now placed 
into the cache line and is being accessed several times.

Another more efficient solution, which is used currently in many non-scientific application is based 
on the following idea. When considering a product of two matrices A and B one can see that :

Figure 3. Iterative algorithm for matrix multiplication

The sample code implementation is shown below:

//this sample code assumes that original matrices are
// double a[N][M];
// double b[M][N];
void dgemm(double * c[], double * a[], double b[], int N, int M)
{

 memset(c, 0, sizeof(int) * N * N);
 double * pLeft = &a[0][0];
 double * pDstLim = &c[0][0] + N * N;
 double * pRightLim = &b[0][0] + N * M;
 for(int * pDst = &c[0][0]; pDst< pDstLim; pDst += N )
 {

  double * pRight = &b[0][0];
  while(pRight < pRightLim)
  {



   double * pTmpLim = pDst + N;
   while(pDst < pTmpLim)
   {
    *(pDst++) +=  *pLeft * *(pRight++);
   }
   ++pLeft;
   pDst -= N;

  }
 }

}

The advantage of this  format is that  instead of multiplying rows of A times columns of B, we 
multiply the elements of A times the rows of B. This means that we don't have to transpose a matrix 
to find the result [4]. 

The solution explained above delivers much better performance than its predecessors.
However, it still fails to multiply big matrices efficiently because elements of the whole matrix B 
are traversed in the increasing order. Such solution works good on relatively small matrices but 
when matrix size becomes bigger the performance degrades. Also such approach is not sufficient 
for parallel implementations making it useless for high performance supercomputers .

4. BLOCKING

The idea behind faster solutions require understanding of how a bigger matrix can be separated into 
smaller inner matrices which can be multiplied independently. Such operation is called blocking.

A11 A12…A1k           B11 B12…B1k           C11 C12 …C1k  
       . . .                x          . . .                 =           . .                   
Ak1  Ak2 …Akk           Bk1 Bk2…Bkk           Ck1 Ck2 …Ckk   

where every block Cij of matrix C is determined with the rule:

The blocking is  applied in all  high performance implementations because it  is  obvious that for 
arbitrary sized input such mechanism is needed to use expensive memory resources efficiently.

Various  algorithms  have  been  introduced  for  blocking  matrix  multiplication.  The  main 
advantage of the blocking operation is that such approach allows to distribute work among different 
processors utilizing various parallel architectures. One of the most famous such algorithms is the 
Strassen's  algorithm,  which  recursively  repartitions  the  matrices  into  2  by  2  blocks  and  then 
multiplies the blocks using 7 multiplications and 18 additions and subtractions. This process needs 
O( N 2.8074 ) steps which is a good improvement over the original O( N 3 ).  Another advanced 
algorithm by Coppersmith and Winograd's  allows to  improve the runtime complexity up to  O(

N 2.376 ).
While ideas for blocking algorithms have been already developed the main problem for the 

developers is how to perform such blocking to utilize the hardware resources most efficiently.
The author of GotoBLAS has used „divide and conquer“ algorithmic decomposition to replace one 
matrix matrix multiplication with subsequent matrix.- vector operations.



5. IMPLEMENTATION ANALYSIS

It has become clear for the scientific community that there is a need for uniform theoretical basis to 
measure the efficiency of various implementations. As a first step of developing such measurement 
the general hardware environment was considered.

Figure 4. Data storage hierarchy in conventional and parallel architecture

As  it  is  shown  above  (Figure  4)  there  are  multiple  interconnections  between  various 
memory layers.  Soon computer scientists realized that the amount of movements of data between 
memory layers is as much important as the amount of arithmetic operations performed on that data. 
Furthermore in current hardware environments different memory units can have slower access times 
thus minimizing data movements between such layers is extremely important problem. 

Theoretically the problem of minimizing data movements can be expressed in the following 
form. When implementing a computational algorithm it is useful to consider such qualitative factors 
as:

m: number of memory elements (words) moved between fast and slow memory 
t(m): time for slow memory operation
f: number of arithmetic operations
t(f): time per arithmetic operation (much smaller than t(m))

Based on such metrics for any algorithm or implementation the Computational Intensity factor can 
be derived:  

Computational Intensity:
q = f / m  

which means average number of flops per slow element access.
When comparing two algorithms or their practical implementation it can be realized that the higher 
the computational intensity, the faster is the implementation.
This fact can be also derived from the formulas. The minimum possible time for any algorithm  can 
be expressed as 



f* t(f) 

when all data is located in fast memory

However, in practical situations the actual time is 

f * t(f) + m * t(m) = f * t(f) * (1 + t(m)/t(f)  * 1/q) 

Looking at the right hand side one can see that with q going to the infinity the overall execution 
time is converging to the estimated minimum. Thus a good implementation has higher q.

As an example of such analysis we consider the improved naive implementation of basic DGEMM 
routine.

Implementation of C = C + A*B 
(DGEMM) 

for i = 1 to n 
{read row i of A into fast memory} 
for j = 1 to n 
{read C(i,j) into fast memory} 
{read column j of B into fast memory} 
for k = 1 to n 

C(i,j) = C(i,j) + A(i,k) * B(k,j) 
{write C(i,j) back to slow memory} 

The naive implementation of matrix multiplication has 
m = n³  (read each column of B  n  times)
         + n²  (read each row of A once )
         + 2 * n²  (read and write each element of C once)
        = n³  + 3 * n² 

So computational intensity parameter for the improved naive implementation is  

q = f / m = 2 * n³ / (n³  + 3 * n²) ~= 2

This gives us a ratio between floating point operations and slow memory access. With the common 
sense  one  can  realize  that  approximately  for  any  two  arithmetic  operation  such  naive 
implementation would require one access to the slow memory. This is factor is converging to 2 so 
there is no dependence to the size of the input data.  

Now let us consider the blocking DGEMM implementation algorithm:

Assume that A,B,C are N by N matrices of b by b blocks where b=n / N is the block size 

for i = 1 to N
      for j = 1 to N
    {read block C(i,j) into fast memory}
      for k = 1 to N
                 {read block A(i,k) into fast memory}
                 {read block B(k,j) into fast memory}



                 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
       {write block C(i,j) back to slow memory}

Figure 5: Blocking DGEMM implementation

For the given blocking implementation the following figures apply:

m =  N* n²   (read a block of B  n³ times ( n³ * n/N * n/N))
         + N* n²   read a block of A  N3 times
         + 2* n²    read and write each block of C once
        =  (2N + 2) *  n²

So computational intensity 

q = f / m = 2 n³ / ((2N + 2) * n²) ~= n / N = b  for large n

Since there is a clear dependence between computational intensity and the block size, in practice 
we can improve the performance of the algorithm by using greater block size of course if  our 
hardware allows such increase. Now it is obvious that such blocking algorithm is faster than naive 
implementation.

As we will  see below the author  of  GotoBLAS has  considered such theoretical  way to 
determine the efficiency of the implementation. Unfortunately most of the real life architectures are 
not so simple as we considered in this chapter although the same approach can be also applied with 
memory architectures  of a higher  dimensions.  The key point  behind the implementation of the 
blocking matrix multiplication algorithm is to derive such block size which will require minimum 
memory access while still achieving high number of floating point operations.

6. DATA MOVEMENTS IN GOTOBLAS

Any approach to repartition the input data to the blocks of the appropriate size still needs an 
efficient low level processing of such blocks. When the total work can be shared among multiple 
functional units the second critical time consuming operation is the fetch of the data from the main 
memory to the system cache memory.  To address this issue a layered memory model has been 
introduced [5].

     Figure 6. Layered memory model



In such diagram it is implied that the higher is the resource, the less is the amount of the available 
memory. In the ideal case the number of floating point operations must be significantly greater then 
the amount of needed data movements among the memory resources because every data movement 
can a lot of time especially when cache misses are involved.. As it has been shown in Table 1 the 
Level 3 BLAS operations need  O(N²) total data movements thus enabling various data blocking 
approaches  for  the input.  It  is  obvious  that  in  other  architectures  such as  NUMA the memory 
resources scheme can have different structure but the GotoBLAS implementation is primarily aimed 
for the traditional memory architectures.

The idea behind such division is that in every point of time some data can be located on one 
of the levels in the memory hierarchy and this data must be moved to the higher or lower level 
memory  resource  [6].  The  computational  gain  in  the  performance  comes  from  the  fact  that 
optimized  code  can  be concentrated  on data  which is  located  on a  single  memory level  while 
ignoring  other  levels.  This  requires  optimal  data  „blocking“  mechanism  to  minimize  data 
movements between adjacent memory levels. As a result to this approach a number of algorithms 
has been developed which allowed to utilize better the more expensive memory resources.

While  accepting  the  memory  architecture  shown  in  the  figure  above  the  author  of 
GotoBLAS  has  noticed  that  such  approach  is  too  simplistic  for  the  completely  successful 
optimization because it ignores the issues related to Translation Look-aside Buffer (TLB).
This  component  of  the  memory  structure  has  been  ignored  by  the  developers  of  other  high 
performance computing libraries thus allowing increase in the performance in the Goto BLAS code.
This resulted in a refined scheme which was considered for creation of the code:

Figure 7. GotoBLAS memory model 

Translation Look-aside Buffer is a fully associative cache which is specifically aimed to 
translate virtual memory addresses to the physical memory addresses.  A TLB is used in conjunction 
with   cache whose tags are  based on virtual  addresses.  Each virtual  address requested by the 
application is presented simultaneously to the TLB and to the cache so that cache access and the 
virtual  to  physical  address  translation  can  be  done  in  parallel  ("on the  side").  If  the  requested 
address is not cached then the physical address is used to locate the data in main memory. 
Every miss in the TLB covered address space is 10 to 60 times slower than a hit. For the average 
compiler generated code the probability of the miss ranges  from 0.01% to 1%. Furthermore the 
miss in the TLB cache is more expensive than mis in the cache memory because it causes CPU to 
stall.

It has been observed by the developer of the GotoBLAS is that the amount of data that can 
be addressed by the TLB  is the limiting factor for the size of the block of the input matrix. An 
architectural goal was to design such algorithm that leaves a part of the input matrix A in the TLB 
cache as  long as the data is needed but then it never enters TLB cache again (here it is meant that 
for a single GEBP operation it is enough to store block of A only once in a cache memory).

Another interesting fact is that the ratio between the rate of floating point operations and the 
rate at which floating point numbers can be streamed from the level-2 (L2) cache to registers is 



typically relatively small.  This means that executing operations on data which resides in L2 cache 
can be a major algorithmic goal. To achieve this goal one must put the block of the input data 
directly into the L2 cache. The author of GotoBLAS has developed a scheme were a bigger part of 
the input matrix A is placed into the L2 cache thus allowing to utilize the observed ratio between 
floating point operations and data movements between L2 cache and registers.

7. DECOMPOSITION IN GOTOBLAS

Assuming the standard matrix multiplication is performed using GotoBLAS code:

C=AxB

where A and B are input matrices with no restrictions on their size.

It has been shown in [1]  that if the input matrices are stored in column major order then the most 
efficient  way  to  calculate  their  product  is  to  decompose  original  problem into  block  –  panel 
multiplications.
For the general matrices A and B and their product C the following steps are applied.

Figure 8. Operational decomposition in GotoBLAS

On the first level of decomposition the operations are performed on submatrices, with one 
dimension dominating the other. Such matrices are called „panels“ and respective operations are 
called general panel panel multiplication (GEPP).  
On the second level of decomposition the data is separated into smallest blocks of such size which 
guarantees efficient in-cache location of the operands.  There are panels (column and row vectors of 
the  original  submatrices)  and  there  is  a  block  (complete  submatrix  of  original  A matrix).  The 
multiplication of block and panel is called GEBP.

The packing algorithm can be described in the following way:

1) Original matrix C is divided in such a way that submatrices (panels) with dominant row size 
are created in consecutive main memory locations.



2) Original  matrix  A is  packed  into  square  submatrices  (blocks)  which  are  placed  into 
consecutive  locations in main memory.

3) Original matrix B is packed to a set of submatrices, which have dominant row size.

4) On the second level decomposition the panel of C is again divided into column vectors in 
such a way that each column vector fits  into the cache among with data from A and B 
matrices.

5) The  entire  square  block  of  A is  placed  into  the  cache  memory.  This  requires  some 
transposition of the original data. This step is important to utilize the TLB cache since the 
entire block of A is used in the cycle for the GEBP operation and it must stay in TLB cache 
as long as possible.

6) Column vector of the panel of the original B matrix is placed into the cache memory.
 
When such packing is performed this guarantees the optimal memory usage.
In the main cycle only GEBP operations are performed on the packed buffers..The floating point 
calculations access only those parts of the matrices which were placed into the cache memory. 

It has been proven in [1]  that to utilize the resources in efficient way the input matrix A 
should reside in cache as much as possible and should be roughly square.
At the same time there should be enough space left in cache for at least one column of B and C. 
In  such  approach  the  overhead  for  memory  operations  adds  only  about  10%  to  the  entire 
computational costs.

It is obvious that the entire process is based on the performance of the lower operations on 
panels and blocks (GEPP and GEBP) since such these are executed most frequently.  Primitives 
GEPP and GEBP are optimized in such a way that register memory is utilized as much as possible. 
For this purposes the handcrafted assembly code is written.

8. BEYOND THE GENERAL MATRIX MULTIPLICATION

It became a general practice to implement other Level 3 operations in terms of GEMM.
Furthermore it was shown in [2] that all Level 3 operations can be decomposed to a set of GEBP, 
GEPP,  DOT operations. Lower level GEPP and GEBP and other similar operations are the building 
blocks for higher level matrix calculations.
However traditional implementations have some complications which are based on the fact that 
data is  being copied  unnecessary between memory resources.  For example,  recursive blocking 
algorithms pack the panels of original data multiple times as part of the individual calls to GEMM, 
which itself is cast in terms of GEPP operations. 

Kazushige Goto has proposed more efficient way to perform other matrix operations such as 
SYRK, SYR2K, TRMM, SYMM, TRSM. The suggestion is to make packing routines as primitives 
for high level libraries so that similar packing can work on different types of input data. At the same 
time  kernel  calculation  routines  will  work  on  the  same  packed  data  enabling  the  highest 
optimization for the entire process.

Such implementation shows better performance on various platforms. When compared with 
other libraries GotoBLAS delivers strong results which outperforms other implementations.
For  example,  when  modified  GEMM  algorithm  is  used  to  implement  triangular  matrix 
multiplication the following performance figures are obtained [2]:



Figure 9. Performance figures

9. CONCLUSION

Matrix  multiplication  algorithms  have  long  evolution  history.  Currently  the  most  efficient 
implementations  are  developed with  the  help  of  various  hardware   mechanisms.  With  the  fast 
changing hardware environments  it  is  expected to  have new,  faster  implementations  for  almost 
every matrix operation.

Author of GotoBLAS has obtained impressive results not only by using hardware specific 
methods  but  also  by  developing  the  optimal  algorithm  for  data  movements  between  memory 
resources. Such approach will be useful on most hardware architectures until the memory model is 
redesigned. This  makes GotoBLAS implementation one of the leading high performance libraries 
for the nearest years for matrix related computations.
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