Eigen  5.0.1-dev+60122df6
 
Loading...
Searching...
No Matches
Umeyama.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_UMEYAMA_H
11#define EIGEN_UMEYAMA_H
12
13// This file requires the user to include
14// * Eigen/Core
15// * Eigen/LU
16// * Eigen/SVD
17// * Eigen/Array
18
19// IWYU pragma: private
20#include "./InternalHeaderCheck.h"
21
22namespace Eigen {
23
24// These helpers are required since it allows to use mixed types as parameters
25// for the Umeyama. The problem with mixed parameters is that the return type
26// cannot trivially be deduced when float and double types are mixed.
27namespace internal {
28
29// Compile time return type deduction for different MatrixBase types.
30// Different means here different alignment and parameters but the same underlying
31// real scalar type.
32template <typename MatrixType, typename OtherMatrixType>
33struct umeyama_transform_matrix_type {
34 enum {
35 MinRowsAtCompileTime =
36 internal::min_size_prefer_dynamic(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),
37
38 // When possible we want to choose some small fixed size value since the result
39 // is likely to fit on the stack. So here, min_size_prefer_dynamic is not what we want.
40 HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime) + 1
41 };
42
43 typedef Matrix<typename traits<MatrixType>::Scalar, HomogeneousDimension, HomogeneousDimension,
44 AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor), HomogeneousDimension,
45 HomogeneousDimension>
46 type;
47};
48
49} // namespace internal
50
89template <typename Derived, typename OtherDerived>
90typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type umeyama(
91 const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true) {
92 typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
93 typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
94 typedef typename NumTraits<Scalar>::Real RealScalar;
95
96 EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
97 EIGEN_STATIC_ASSERT(
98 (internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value),
99 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
100
101 enum { Dimension = internal::min_size_prefer_dynamic(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
102
103 typedef Matrix<Scalar, Dimension, 1> VectorType;
105 typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;
106
107 const Index m = src.rows(); // dimension
108 const Index n = src.cols(); // number of measurements
109
110 // required for demeaning ...
111 const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n);
112
113 // computation of mean
114 const VectorType src_mean = src.rowwise().sum() * one_over_n;
115 const VectorType dst_mean = dst.rowwise().sum() * one_over_n;
116
117 // demeaning of src and dst points
118 const RowMajorMatrixType src_demean = src.colwise() - src_mean;
119 const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;
120
121 // Eq. (38)
122 const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
123
125
126 // Initialize the resulting transformation with an identity matrix...
127 TransformationMatrixType Rt = TransformationMatrixType::Identity(m + 1, m + 1);
128
129 // Eq. (39)
130 VectorType S = VectorType::Ones(m);
131
132 if (svd.matrixU().determinant() * svd.matrixV().determinant() < 0) {
133 Index tmp = m - 1;
134 S(tmp) = -1;
135 }
136
137 // Eq. (40) and (43)
138 Rt.block(0, 0, m, m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
139
140 if (with_scaling) {
141 // Eq. (36)-(37)
142 const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
143
144 // Eq. (42)
145 const Scalar c = Scalar(1) / src_var * svd.singularValues().dot(S);
146
147 // Eq. (41)
148 Rt.col(m).head(m) = dst_mean;
149 Rt.col(m).head(m).noalias() -= c * Rt.topLeftCorner(m, m) * src_mean;
150 Rt.block(0, 0, m, m) *= c;
151 } else {
152 Rt.col(m).head(m) = dst_mean;
153 Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m, m) * src_mean;
154 }
155
156 return Rt;
157}
158
159} // end namespace Eigen
160
161#endif // EIGEN_UMEYAMA_H
ConstColwiseReturnType colwise() const
Definition DenseBase.h:518
ConstRowwiseReturnType rowwise() const
Definition DenseBase.h:508
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition JacobiSVD.h:500
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:52
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186
const SingularValuesType & singularValues() const
Definition SVDBase.h:200
const MatrixUType & matrixU() const
Definition SVDBase.h:173
const MatrixVType & matrixV() const
Definition SVDBase.h:189
const SumReturnType sum() const
Definition VectorwiseOp.h:469
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama(const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
Returns the transformation between two point sets.
Definition Umeyama.h:90
@ ColMajor
Definition Constants.h:318
@ RowMajor
Definition Constants.h:320
@ AutoAlign
Definition Constants.h:322
const unsigned int RowMajorBit
Definition Constants.h:70
Namespace containing all symbols from the Eigen library.
Definition B01_Experimental.dox:1
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:82
const int Dynamic
Definition Constants.h:25