Eigen  5.0.1-dev+60122df6
 
Loading...
Searching...
No Matches
Memory.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8// Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9// Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com>
10//
11// This Source Code Form is subject to the terms of the Mozilla
12// Public License v. 2.0. If a copy of the MPL was not distributed
13// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14
15/*****************************************************************************
16*** Platform checks for aligned malloc functions ***
17*****************************************************************************/
18
19#ifndef EIGEN_MEMORY_H
20#define EIGEN_MEMORY_H
21
22#ifndef EIGEN_MALLOC_ALREADY_ALIGNED
23
24// Try to determine automatically if malloc is already aligned.
25
26// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
27// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
28// This is true at least since glibc 2.8.
29// This leaves the question how to detect 64-bit. According to this document,
30// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
31// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
32// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
33#if defined(__GLIBC__) && ((__GLIBC__ >= 2 && __GLIBC_MINOR__ >= 8) || __GLIBC__ > 2) && defined(__LP64__) && \
34 !defined(__SANITIZE_ADDRESS__) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
35#define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
36#else
37#define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
38#endif
39
40// FreeBSD 6 seems to have 16-byte aligned malloc
41// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
42// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
43// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
44#if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
45#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
46#else
47#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
48#endif
49
50#if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) || \
51 EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
52#define EIGEN_MALLOC_ALREADY_ALIGNED 1
53#else
54#define EIGEN_MALLOC_ALREADY_ALIGNED 0
55#endif
56
57#endif
58
59#ifndef EIGEN_MALLOC_CHECK_THREAD_LOCAL
60
61// Check whether we can use the thread_local keyword to allow or disallow
62// allocating memory with per-thread granularity, by means of the
63// set_is_malloc_allowed() function.
64#ifndef EIGEN_AVOID_THREAD_LOCAL
65
66#if ((EIGEN_COMP_GNUC) || __has_feature(cxx_thread_local) || EIGEN_COMP_MSVC >= 1900) && \
67 !defined(EIGEN_GPU_COMPILE_PHASE)
68#define EIGEN_MALLOC_CHECK_THREAD_LOCAL thread_local
69#else
70#define EIGEN_MALLOC_CHECK_THREAD_LOCAL
71#endif
72
73#else // EIGEN_AVOID_THREAD_LOCAL
74#define EIGEN_MALLOC_CHECK_THREAD_LOCAL
75#endif // EIGEN_AVOID_THREAD_LOCAL
76
77#endif
78
79// IWYU pragma: private
80#include "../InternalHeaderCheck.h"
81
82namespace Eigen {
83
84namespace internal {
85
86/*****************************************************************************
87*** Implementation of portable aligned versions of malloc/free/realloc ***
88*****************************************************************************/
89
90#ifdef EIGEN_NO_MALLOC
91EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() {
92 eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
93}
94EIGEN_DEVICE_FUNC inline void check_that_free_is_allowed() {
95 eigen_assert(false && "heap deallocation is forbidden (EIGEN_NO_MALLOC is defined)");
96}
97#elif defined EIGEN_RUNTIME_NO_MALLOC
98EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false) {
99 EIGEN_MALLOC_CHECK_THREAD_LOCAL static bool value = true;
100 if (update == 1) value = new_value;
101 return value;
102}
103EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
104EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
105EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() {
106 eigen_assert(is_malloc_allowed() &&
107 "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and set_is_malloc_allowed is false)");
108}
109EIGEN_DEVICE_FUNC inline bool is_free_allowed_impl(bool update, bool new_value = false) {
110 EIGEN_MALLOC_CHECK_THREAD_LOCAL static bool value = true;
111 if (update == 1) value = new_value;
112 return value;
113}
114EIGEN_DEVICE_FUNC inline bool is_free_allowed() { return is_free_allowed_impl(false); }
115EIGEN_DEVICE_FUNC inline bool set_is_free_allowed(bool new_value) { return is_free_allowed_impl(true, new_value); }
116EIGEN_DEVICE_FUNC inline void check_that_free_is_allowed() {
117 eigen_assert(is_malloc_allowed() &&
118 "heap deallocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and set_is_free_allowed is false)");
119}
120#else
121EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() {}
122EIGEN_DEVICE_FUNC inline void check_that_free_is_allowed() {}
123#endif
124
125EIGEN_DEVICE_FUNC inline void throw_std_bad_alloc() {
126#ifdef EIGEN_EXCEPTIONS
127 throw std::bad_alloc();
128#else
129 std::size_t huge = static_cast<std::size_t>(-1);
130#if defined(EIGEN_HIPCC)
131 //
132 // calls to "::operator new" are to be treated as opaque function calls (i.e no inlining),
133 // and as a consequence the code in the #else block triggers the hipcc warning :
134 // "no overloaded function has restriction specifiers that are compatible with the ambient context"
135 //
136 // "throw_std_bad_alloc" has the EIGEN_DEVICE_FUNC attribute, so it seems that hipcc expects
137 // the same on "operator new"
138 // Reverting code back to the old version in this #if block for the hipcc compiler
139 //
140 new int[huge];
141#else
142 void* unused = ::operator new(huge);
143 EIGEN_UNUSED_VARIABLE(unused);
144#endif
145#endif
146}
147
148/*****************************************************************************
149*** Implementation of handmade aligned functions ***
150*****************************************************************************/
151
152/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
153
157EIGEN_DEVICE_FUNC inline void* handmade_aligned_malloc(std::size_t size,
158 std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES) {
159 eigen_assert(alignment >= sizeof(void*) && alignment <= 256 && (alignment & (alignment - 1)) == 0 &&
160 "Alignment must be at least sizeof(void*), less than or equal to 256, and a power of 2");
161
162 check_that_malloc_is_allowed();
163 EIGEN_USING_STD(malloc)
164 void* original = malloc(size + alignment);
165 if (original == nullptr) return nullptr;
166 std::size_t offset = alignment - (reinterpret_cast<std::size_t>(original) & (alignment - 1));
167 void* aligned = static_cast<void*>(static_cast<uint8_t*>(original) + offset);
168 // Store offset - 1, since it is guaranteed to be at least 1.
169 *(static_cast<uint8_t*>(aligned) - 1) = static_cast<uint8_t>(offset - 1);
170 return aligned;
171}
172
174EIGEN_DEVICE_FUNC inline void handmade_aligned_free(void* ptr) {
175 if (ptr != nullptr) {
176 std::size_t offset = static_cast<std::size_t>(*(static_cast<uint8_t*>(ptr) - 1)) + 1;
177 void* original = static_cast<void*>(static_cast<uint8_t*>(ptr) - offset);
178
179 check_that_free_is_allowed();
180 EIGEN_USING_STD(free)
181 free(original);
182 }
183}
184
190EIGEN_DEVICE_FUNC inline void* handmade_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size,
191 std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES) {
192 if (ptr == nullptr) return handmade_aligned_malloc(new_size, alignment);
193 std::size_t old_offset = static_cast<std::size_t>(*(static_cast<uint8_t*>(ptr) - 1)) + 1;
194 void* old_original = static_cast<uint8_t*>(ptr) - old_offset;
195
196 check_that_malloc_is_allowed();
197 EIGEN_USING_STD(realloc)
198 void* original = realloc(old_original, new_size + alignment);
199 if (original == nullptr) return nullptr;
200 if (original == old_original) return ptr;
201 std::size_t offset = alignment - (reinterpret_cast<std::size_t>(original) & (alignment - 1));
202 void* aligned = static_cast<void*>(static_cast<uint8_t*>(original) + offset);
203 if (offset != old_offset) {
204 const void* src = static_cast<const void*>(static_cast<uint8_t*>(original) + old_offset);
205 std::size_t count = (std::min)(new_size, old_size);
206 std::memmove(aligned, src, count);
207 }
208 // Store offset - 1, since it is guaranteed to be at least 1.
209 *(static_cast<uint8_t*>(aligned) - 1) = static_cast<uint8_t>(offset - 1);
210 return aligned;
211}
212
216EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size) {
217 if (size == 0) return nullptr;
218
219 void* result;
220#if (EIGEN_DEFAULT_ALIGN_BYTES == 0) || EIGEN_MALLOC_ALREADY_ALIGNED
221
222 check_that_malloc_is_allowed();
223 EIGEN_USING_STD(malloc)
224 result = malloc(size);
225
226#if EIGEN_DEFAULT_ALIGN_BYTES == 16
227 eigen_assert((size < 16 || (std::size_t(result) % 16) == 0) &&
228 "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback "
229 "to handmade aligned memory allocator.");
230#endif
231#else
232 result = handmade_aligned_malloc(size);
233#endif
234
235 if (!result && size) throw_std_bad_alloc();
236
237 return result;
238}
239
241EIGEN_DEVICE_FUNC inline void aligned_free(void* ptr) {
242#if (EIGEN_DEFAULT_ALIGN_BYTES == 0) || EIGEN_MALLOC_ALREADY_ALIGNED
243
244 if (ptr != nullptr) {
245 check_that_free_is_allowed();
246 EIGEN_USING_STD(free)
247 free(ptr);
248 }
249
250#else
251 handmade_aligned_free(ptr);
252#endif
253}
254
260EIGEN_DEVICE_FUNC inline void* aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) {
261 if (ptr == nullptr) return aligned_malloc(new_size);
262 if (old_size == new_size) return ptr;
263 if (new_size == 0) {
264 aligned_free(ptr);
265 return nullptr;
266 }
267
268 void* result;
269#if (EIGEN_DEFAULT_ALIGN_BYTES == 0) || EIGEN_MALLOC_ALREADY_ALIGNED
270 EIGEN_UNUSED_VARIABLE(old_size)
271
272 check_that_malloc_is_allowed();
273 EIGEN_USING_STD(realloc)
274 result = realloc(ptr, new_size);
275#else
276 result = handmade_aligned_realloc(ptr, new_size, old_size);
277#endif
278
279 if (!result && new_size) throw_std_bad_alloc();
280
281 return result;
282}
283
284/*****************************************************************************
285*** Implementation of conditionally aligned functions ***
286*****************************************************************************/
287
291template <bool Align>
292EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) {
293 return aligned_malloc(size);
294}
295
296template <>
297EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size) {
298 if (size == 0) return nullptr;
299
300 check_that_malloc_is_allowed();
301 EIGEN_USING_STD(malloc)
302 void* result = malloc(size);
303
304 if (!result && size) throw_std_bad_alloc();
305 return result;
306}
307
309template <bool Align>
310EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void* ptr) {
311 aligned_free(ptr);
312}
313
314template <>
315EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void* ptr) {
316 if (ptr != nullptr) {
317 check_that_free_is_allowed();
318 EIGEN_USING_STD(free)
319 free(ptr);
320 }
321}
322
323template <bool Align>
324EIGEN_DEVICE_FUNC inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) {
325 return aligned_realloc(ptr, new_size, old_size);
326}
327
328template <>
329EIGEN_DEVICE_FUNC inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size,
330 std::size_t old_size) {
331 if (ptr == nullptr) return conditional_aligned_malloc<false>(new_size);
332 if (old_size == new_size) return ptr;
333 if (new_size == 0) {
334 conditional_aligned_free<false>(ptr);
335 return nullptr;
336 }
337
338 check_that_malloc_is_allowed();
339 EIGEN_USING_STD(realloc)
340 return realloc(ptr, new_size);
341}
342
343/*****************************************************************************
344*** Construction/destruction of array elements ***
345*****************************************************************************/
346
350template <typename T>
351EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T* ptr, std::size_t size) {
352 // always destruct an array starting from the end.
353 if (ptr)
354 while (size) ptr[--size].~T();
355}
356
360template <typename T>
361EIGEN_DEVICE_FUNC inline T* default_construct_elements_of_array(T* ptr, std::size_t size) {
362 std::size_t i = 0;
363 EIGEN_TRY {
364 for (i = 0; i < size; ++i) ::new (ptr + i) T;
365 }
366 EIGEN_CATCH(...) {
367 destruct_elements_of_array(ptr, i);
368 EIGEN_THROW;
369 }
370 return ptr;
371}
372
376template <typename T>
377EIGEN_DEVICE_FUNC inline T* copy_construct_elements_of_array(T* ptr, const T* src, std::size_t size) {
378 std::size_t i = 0;
379 EIGEN_TRY {
380 for (i = 0; i < size; ++i) ::new (ptr + i) T(*(src + i));
381 }
382 EIGEN_CATCH(...) {
383 destruct_elements_of_array(ptr, i);
384 EIGEN_THROW;
385 }
386 return ptr;
387}
388
392template <typename T>
393EIGEN_DEVICE_FUNC inline T* move_construct_elements_of_array(T* ptr, T* src, std::size_t size) {
394 std::size_t i = 0;
395 EIGEN_TRY {
396 for (i = 0; i < size; ++i) ::new (ptr + i) T(std::move(*(src + i)));
397 }
398 EIGEN_CATCH(...) {
399 destruct_elements_of_array(ptr, i);
400 EIGEN_THROW;
401 }
402 return ptr;
403}
404
405/*****************************************************************************
406*** Implementation of aligned new/delete-like functions ***
407*****************************************************************************/
408
409template <typename T>
410EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size) {
411 constexpr std::size_t max_elements = (std::numeric_limits<std::ptrdiff_t>::max)() / sizeof(T);
412 if (size > max_elements) throw_std_bad_alloc();
413}
414
419template <typename T>
420EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size) {
421 check_size_for_overflow<T>(size);
422 T* result = static_cast<T*>(aligned_malloc(sizeof(T) * size));
423 EIGEN_TRY { return default_construct_elements_of_array(result, size); }
424 EIGEN_CATCH(...) {
425 aligned_free(result);
426 EIGEN_THROW;
427 }
428 return result;
429}
430
431template <typename T, bool Align>
432EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size) {
433 check_size_for_overflow<T>(size);
434 T* result = static_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T) * size));
435 EIGEN_TRY { return default_construct_elements_of_array(result, size); }
436 EIGEN_CATCH(...) {
437 conditional_aligned_free<Align>(result);
438 EIGEN_THROW;
439 }
440 return result;
441}
442
446template <typename T>
447EIGEN_DEVICE_FUNC inline void aligned_delete(T* ptr, std::size_t size) {
448 destruct_elements_of_array<T>(ptr, size);
449 aligned_free(ptr);
450}
451
455template <typename T, bool Align>
456EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T* ptr, std::size_t size) {
457 destruct_elements_of_array<T>(ptr, size);
458 conditional_aligned_free<Align>(ptr);
459}
460
461template <typename T, bool Align>
462EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size) {
463 check_size_for_overflow<T>(new_size);
464 check_size_for_overflow<T>(old_size);
465
466 // If elements need to be explicitly initialized, we cannot simply realloc
467 // (or memcpy) the memory block - each element needs to be reconstructed.
468 // Otherwise, objects that contain internal pointers like mpfr or
469 // AnnoyingScalar can be pointing to the wrong thing.
470 T* result = static_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T) * new_size));
471 EIGEN_TRY {
472 // Move-construct initial elements.
473 std::size_t copy_size = (std::min)(old_size, new_size);
474 move_construct_elements_of_array(result, pts, copy_size);
475
476 // Default-construct remaining elements.
477 if (new_size > old_size) {
478 default_construct_elements_of_array(result + copy_size, new_size - old_size);
479 }
480
481 // Delete old elements.
482 conditional_aligned_delete<T, Align>(pts, old_size);
483 }
484 EIGEN_CATCH(...) {
485 conditional_aligned_free<Align>(result);
486 EIGEN_THROW;
487 }
488
489 return result;
490}
491
492template <typename T, bool Align>
493EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size) {
494 if (size == 0) return nullptr; // short-cut. Also fixes Bug 884
495 check_size_for_overflow<T>(size);
496 T* result = static_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T) * size));
497 if (NumTraits<T>::RequireInitialization) {
498 EIGEN_TRY { default_construct_elements_of_array(result, size); }
499 EIGEN_CATCH(...) {
500 conditional_aligned_free<Align>(result);
501 EIGEN_THROW;
502 }
503 }
504 return result;
505}
506
507template <typename T, bool Align>
508EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size) {
509 if (NumTraits<T>::RequireInitialization) {
510 return conditional_aligned_realloc_new<T, Align>(pts, new_size, old_size);
511 }
512
513 check_size_for_overflow<T>(new_size);
514 check_size_for_overflow<T>(old_size);
515 return static_cast<T*>(
516 conditional_aligned_realloc<Align>(static_cast<void*>(pts), sizeof(T) * new_size, sizeof(T) * old_size));
517}
518
519template <typename T, bool Align>
520EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T* ptr, std::size_t size) {
521 if (NumTraits<T>::RequireInitialization) destruct_elements_of_array<T>(ptr, size);
522 conditional_aligned_free<Align>(ptr);
523}
524
525/****************************************************************************/
526
545template <int Alignment, typename Scalar, typename Index>
546EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size) {
547 const Index ScalarSize = sizeof(Scalar);
548 const Index AlignmentSize = Alignment / ScalarSize;
549 const Index AlignmentMask = AlignmentSize - 1;
550
551 if (AlignmentSize <= 1) {
552 // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar
553 // so that all elements of the array have the same alignment.
554 return 0;
555 } else if ((std::uintptr_t(array) & (sizeof(Scalar) - 1)) || (Alignment % ScalarSize) != 0) {
556 // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the
557 // scalar size. Consequently, no element of the array is well aligned.
558 return size;
559 } else {
560 Index first = (AlignmentSize - (Index((std::uintptr_t(array) / sizeof(Scalar))) & AlignmentMask)) & AlignmentMask;
561 return (first < size) ? first : size;
562 }
563}
564
567template <typename Scalar, typename Index>
568EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size) {
569 typedef typename packet_traits<Scalar>::type DefaultPacketType;
570 return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size);
571}
572
575template <typename Index>
576inline Index first_multiple(Index size, Index base) {
577 return ((size + base - 1) / base) * base;
578}
579
580// std::copy is much slower than memcpy, so let's introduce a smart_copy which
581// use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
582template <typename T, bool UseMemcpy>
583struct smart_copy_helper;
584
585template <typename T>
586EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target) {
587 smart_copy_helper<T, !NumTraits<T>::RequireInitialization>::run(start, end, target);
588}
589
590template <typename T>
591struct smart_copy_helper<T, true> {
592 EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) {
593 std::intptr_t size = std::intptr_t(end) - std::intptr_t(start);
594 if (size == 0) return;
595 eigen_internal_assert(start != 0 && end != 0 && target != 0);
596 EIGEN_USING_STD(memcpy)
597 memcpy(target, start, size);
598 }
599};
600
601template <typename T>
602struct smart_copy_helper<T, false> {
603 EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) { std::copy(start, end, target); }
604};
605
606// intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise.
607template <typename T, bool UseMemmove>
608struct smart_memmove_helper;
609
610template <typename T>
611void smart_memmove(const T* start, const T* end, T* target) {
612 smart_memmove_helper<T, !NumTraits<T>::RequireInitialization>::run(start, end, target);
613}
614
615template <typename T>
616struct smart_memmove_helper<T, true> {
617 static inline void run(const T* start, const T* end, T* target) {
618 std::intptr_t size = std::intptr_t(end) - std::intptr_t(start);
619 if (size == 0) return;
620 eigen_internal_assert(start != 0 && end != 0 && target != 0);
621 std::memmove(target, start, size);
622 }
623};
624
625template <typename T>
626struct smart_memmove_helper<T, false> {
627 static inline void run(const T* start, const T* end, T* target) {
628 if (std::uintptr_t(target) < std::uintptr_t(start)) {
629 std::copy(start, end, target);
630 } else {
631 std::ptrdiff_t count = (std::ptrdiff_t(end) - std::ptrdiff_t(start)) / sizeof(T);
632 std::copy_backward(start, end, target + count);
633 }
634 }
635};
636
637template <typename T>
638EIGEN_DEVICE_FUNC T* smart_move(T* start, T* end, T* target) {
639 return std::move(start, end, target);
640}
641
642/*****************************************************************************
643*** Implementation of runtime stack allocation (falling back to malloc) ***
644*****************************************************************************/
645
646// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
647// to the appropriate stack allocation function
648#if !defined EIGEN_ALLOCA && !defined EIGEN_GPU_COMPILE_PHASE
649#if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca)
650#define EIGEN_ALLOCA alloca
651#elif EIGEN_COMP_MSVC
652#define EIGEN_ALLOCA _alloca
653#endif
654#endif
655
656// With clang -Oz -mthumb, alloca changes the stack pointer in a way that is
657// not allowed in Thumb2. -DEIGEN_STACK_ALLOCATION_LIMIT=0 doesn't work because
658// the compiler still emits bad code because stack allocation checks use "<=".
659// TODO: Eliminate after https://bugs.llvm.org/show_bug.cgi?id=23772
660// is fixed.
661#if defined(__clang__) && defined(__thumb__)
662#undef EIGEN_ALLOCA
663#endif
664
665// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
666// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
667template <typename T>
668class aligned_stack_memory_handler : noncopyable {
669 public:
670 /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
671 * Note that \a ptr can be 0 regardless of the other parameters.
672 * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type
673 *T (see NumTraits<T>::RequireInitialization). In this case, the buffer elements will also be destructed when this
674 *handler will be destructed. Finally, if \a dealloc is true, then the pointer \a ptr is freed.
675 **/
676 EIGEN_DEVICE_FUNC aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc)
677 : m_ptr(ptr), m_size(size), m_deallocate(dealloc) {
678 if (NumTraits<T>::RequireInitialization && m_ptr) Eigen::internal::default_construct_elements_of_array(m_ptr, size);
679 }
680 EIGEN_DEVICE_FUNC ~aligned_stack_memory_handler() {
681 if (NumTraits<T>::RequireInitialization && m_ptr) Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
682 if (m_deallocate) Eigen::internal::aligned_free(m_ptr);
683 }
684
685 protected:
686 T* m_ptr;
687 std::size_t m_size;
688 bool m_deallocate;
689};
690
691#ifdef EIGEN_ALLOCA
692
693template <typename Xpr, int NbEvaluations,
694 bool MapExternalBuffer = nested_eval<Xpr, NbEvaluations>::Evaluate && Xpr::MaxSizeAtCompileTime == Dynamic>
695struct local_nested_eval_wrapper {
696 static constexpr bool NeedExternalBuffer = false;
697 typedef typename Xpr::Scalar Scalar;
698 typedef typename nested_eval<Xpr, NbEvaluations>::type ObjectType;
699 ObjectType object;
700
701 EIGEN_DEVICE_FUNC local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr) : object(xpr) {
702 EIGEN_UNUSED_VARIABLE(ptr);
703 eigen_internal_assert(ptr == 0);
704 }
705};
706
707template <typename Xpr, int NbEvaluations>
708struct local_nested_eval_wrapper<Xpr, NbEvaluations, true> {
709 static constexpr bool NeedExternalBuffer = true;
710 typedef typename Xpr::Scalar Scalar;
711 typedef typename plain_object_eval<Xpr>::type PlainObject;
712 typedef Map<PlainObject, EIGEN_DEFAULT_ALIGN_BYTES> ObjectType;
713 ObjectType object;
714
715 EIGEN_DEVICE_FUNC local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr)
716 : object(ptr == 0 ? reinterpret_cast<Scalar*>(Eigen::internal::aligned_malloc(sizeof(Scalar) * xpr.size())) : ptr,
717 xpr.rows(), xpr.cols()),
718 m_deallocate(ptr == 0) {
719 if (NumTraits<Scalar>::RequireInitialization && object.data())
720 Eigen::internal::default_construct_elements_of_array(object.data(), object.size());
721 object = xpr;
722 }
723
724 EIGEN_DEVICE_FUNC ~local_nested_eval_wrapper() {
725 if (NumTraits<Scalar>::RequireInitialization && object.data())
726 Eigen::internal::destruct_elements_of_array(object.data(), object.size());
727 if (m_deallocate) Eigen::internal::aligned_free(object.data());
728 }
729
730 private:
731 bool m_deallocate;
732};
733
734#endif // EIGEN_ALLOCA
735
736template <typename T>
737class scoped_array : noncopyable {
738 T* m_ptr;
739
740 public:
741 explicit scoped_array(std::ptrdiff_t size) { m_ptr = new T[size]; }
742 ~scoped_array() { delete[] m_ptr; }
743 T& operator[](std::ptrdiff_t i) { return m_ptr[i]; }
744 const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; }
745 T*& ptr() { return m_ptr; }
746 const T* ptr() const { return m_ptr; }
747 operator const T*() const { return m_ptr; }
748};
749
750template <typename T>
751void swap(scoped_array<T>& a, scoped_array<T>& b) {
752 std::swap(a.ptr(), b.ptr());
753}
754
755} // end namespace internal
756
780#if defined(EIGEN_ALLOCA) && !defined(EIGEN_NO_ALLOCA)
781
782#if EIGEN_DEFAULT_ALIGN_BYTES > 0
783// We always manually re-align the result of EIGEN_ALLOCA.
784// If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
785
786#if ((EIGEN_COMP_GNUC || EIGEN_COMP_CLANG) && !EIGEN_COMP_NVHPC)
787#define EIGEN_ALIGNED_ALLOCA(SIZE) __builtin_alloca_with_align(SIZE, CHAR_BIT* EIGEN_DEFAULT_ALIGN_BYTES)
788#else
789EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* eigen_aligned_alloca_helper(void* ptr) {
790 constexpr std::uintptr_t mask = EIGEN_DEFAULT_ALIGN_BYTES - 1;
791 std::uintptr_t ptr_int = std::uintptr_t(ptr);
792 std::uintptr_t aligned_ptr_int = (ptr_int + mask) & ~mask;
793 std::uintptr_t offset = aligned_ptr_int - ptr_int;
794 return static_cast<void*>(static_cast<uint8_t*>(ptr) + offset);
795}
796#define EIGEN_ALIGNED_ALLOCA(SIZE) eigen_aligned_alloca_helper(EIGEN_ALLOCA(SIZE + EIGEN_DEFAULT_ALIGN_BYTES - 1))
797#endif
798
799#else
800#define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE)
801#endif
802
803#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER) \
804 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
805 TYPE* NAME = (BUFFER) != 0 ? (BUFFER) \
806 : reinterpret_cast<TYPE*>((sizeof(TYPE) * (SIZE) <= EIGEN_STACK_ALLOCATION_LIMIT) \
807 ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE) * (SIZE)) \
808 : Eigen::internal::aligned_malloc(sizeof(TYPE) * (SIZE))); \
809 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME, _stack_memory_destructor)( \
810 (BUFFER) == 0 ? NAME : 0, SIZE, sizeof(TYPE) * (SIZE) > EIGEN_STACK_ALLOCATION_LIMIT)
811
812#define ei_declare_local_nested_eval(XPR_T, XPR, N, NAME) \
813 Eigen::internal::local_nested_eval_wrapper<XPR_T, N> EIGEN_CAT(NAME, _wrapper)( \
814 XPR, reinterpret_cast<typename XPR_T::Scalar*>( \
815 ((Eigen::internal::local_nested_eval_wrapper<XPR_T, N>::NeedExternalBuffer) && \
816 ((sizeof(typename XPR_T::Scalar) * XPR.size()) <= EIGEN_STACK_ALLOCATION_LIMIT)) \
817 ? EIGEN_ALIGNED_ALLOCA(sizeof(typename XPR_T::Scalar) * XPR.size()) \
818 : 0)); \
819 typename Eigen::internal::local_nested_eval_wrapper<XPR_T, N>::ObjectType NAME(EIGEN_CAT(NAME, _wrapper).object)
820
821#else
822
823#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER) \
824 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
825 TYPE* NAME = \
826 (BUFFER) != 0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE) * (SIZE))); \
827 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME, _stack_memory_destructor)( \
828 (BUFFER) == 0 ? NAME : 0, SIZE, true)
829
830#define ei_declare_local_nested_eval(XPR_T, XPR, N, NAME) \
831 typename Eigen::internal::nested_eval<XPR_T, N>::type NAME(XPR)
832
833#endif
834
835/*****************************************************************************
836*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
837*****************************************************************************/
838
839#if EIGEN_HAS_CXX17_OVERALIGN
840
841// C++17 -> no need to bother about alignment anymore :)
842
843#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign)
844#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
845#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW
846#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Size)
847
848#else
849
850// HIP does not support new/delete on device.
851#if EIGEN_MAX_ALIGN_BYTES != 0 && !defined(EIGEN_HIP_DEVICE_COMPILE)
852#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
853 EIGEN_DEVICE_FUNC void* operator new(std::size_t size, const std::nothrow_t&) noexcept { \
854 EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
855 EIGEN_CATCH(...) { return 0; } \
856 }
857#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
858 EIGEN_DEVICE_FUNC void* operator new(std::size_t size) { \
859 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
860 } \
861 EIGEN_DEVICE_FUNC void* operator new[](std::size_t size) { \
862 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
863 } \
864 EIGEN_DEVICE_FUNC void operator delete(void* ptr) noexcept { \
865 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
866 } \
867 EIGEN_DEVICE_FUNC void operator delete[](void* ptr) noexcept { \
868 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
869 } \
870 EIGEN_DEVICE_FUNC void operator delete(void* ptr, std::size_t /* sz */) noexcept { \
871 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
872 } \
873 EIGEN_DEVICE_FUNC void operator delete[](void* ptr, std::size_t /* sz */) noexcept { \
874 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
875 } \
876 /* in-place new and delete. since (at least afaik) there is no actual */ \
877 /* memory allocated we can safely let the default implementation handle */ \
878 /* this particular case. */ \
879 EIGEN_DEVICE_FUNC static void* operator new(std::size_t size, void* ptr) { return ::operator new(size, ptr); } \
880 EIGEN_DEVICE_FUNC static void* operator new[](std::size_t size, void* ptr) { return ::operator new[](size, ptr); } \
881 EIGEN_DEVICE_FUNC void operator delete(void* memory, void* ptr) noexcept { return ::operator delete(memory, ptr); } \
882 EIGEN_DEVICE_FUNC void operator delete[](void* memory, void* ptr) noexcept { \
883 return ::operator delete[](memory, ptr); \
884 } \
885 /* nothrow-new (returns zero instead of std::bad_alloc) */ \
886 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
887 EIGEN_DEVICE_FUNC void operator delete(void* ptr, const std::nothrow_t&) noexcept { \
888 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
889 } \
890 typedef void eigen_aligned_operator_new_marker_type;
891#else
892#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
893#endif
894
895#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
896#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Size) \
897 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF( \
898 bool(((Size) != Eigen::Dynamic) && \
899 (((EIGEN_MAX_ALIGN_BYTES >= 16) && ((sizeof(Scalar) * (Size)) % (EIGEN_MAX_ALIGN_BYTES) == 0)) || \
900 ((EIGEN_MAX_ALIGN_BYTES >= 32) && ((sizeof(Scalar) * (Size)) % (EIGEN_MAX_ALIGN_BYTES / 2) == 0)) || \
901 ((EIGEN_MAX_ALIGN_BYTES >= 64) && ((sizeof(Scalar) * (Size)) % (EIGEN_MAX_ALIGN_BYTES / 4) == 0)))))
902
903#endif
904
905/****************************************************************************/
906
931template <class T>
932class aligned_allocator {
933 public:
934 typedef std::size_t size_type;
935 typedef std::ptrdiff_t difference_type;
936 typedef T* pointer;
937 typedef const T* const_pointer;
938 typedef T& reference;
939 typedef const T& const_reference;
940 typedef T value_type;
941
942 template <class U>
943 struct rebind {
944 typedef aligned_allocator<U> other;
945 };
946
947 aligned_allocator() = default;
948
949 aligned_allocator(const aligned_allocator&) = default;
950
951 template <class U>
952 aligned_allocator(const aligned_allocator<U>&) {}
953
954 template <class U>
955 constexpr bool operator==(const aligned_allocator<U>&) const noexcept {
956 return true;
957 }
958 template <class U>
959 constexpr bool operator!=(const aligned_allocator<U>&) const noexcept {
960 return false;
961 }
962
963#if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_STRICT_AT_LEAST(7, 0, 0)
964 // In gcc std::allocator::max_size() is bugged making gcc triggers a warning:
965 // eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object
966 // size 9223372036854775807 See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544
967 size_type max_size() const { return (std::numeric_limits<std::ptrdiff_t>::max)() / sizeof(T); }
968#endif
969
970 pointer allocate(size_type num, const void* /*hint*/ = 0) {
971 internal::check_size_for_overflow<T>(num);
972 return static_cast<pointer>(internal::aligned_malloc(num * sizeof(T)));
973 }
974
975 void deallocate(pointer p, size_type /*num*/) { internal::aligned_free(p); }
976};
977
978//---------- Cache sizes ----------
979
980#if !defined(EIGEN_NO_CPUID)
981#if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64
982#if defined(__PIC__) && EIGEN_ARCH_i386
983// Case for x86 with PIC
984#define EIGEN_CPUID(abcd, func, id) \
985 __asm__ __volatile__("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1" \
986 : "=a"(abcd[0]), "=&r"(abcd[1]), "=c"(abcd[2]), "=d"(abcd[3]) \
987 : "a"(func), "c"(id));
988#elif defined(__PIC__) && EIGEN_ARCH_x86_64
989// Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with
990// the default small code model. However, we cannot detect which code model is used, and the xchg overhead is negligible
991// anyway.
992#define EIGEN_CPUID(abcd, func, id) \
993 __asm__ __volatile__("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1" \
994 : "=a"(abcd[0]), "=&r"(abcd[1]), "=c"(abcd[2]), "=d"(abcd[3]) \
995 : "0"(func), "2"(id));
996#else
997// Case for x86_64 or x86 w/o PIC
998#define EIGEN_CPUID(abcd, func, id) \
999 __asm__ __volatile__("cpuid" : "=a"(abcd[0]), "=b"(abcd[1]), "=c"(abcd[2]), "=d"(abcd[3]) : "0"(func), "2"(id));
1000#endif
1001#elif EIGEN_COMP_MSVC
1002#if EIGEN_ARCH_i386_OR_x86_64
1003#define EIGEN_CPUID(abcd, func, id) __cpuidex((int*)abcd, func, id)
1004#endif
1005#endif
1006#endif
1007
1008namespace internal {
1009
1010#ifdef EIGEN_CPUID
1011
1012inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) {
1013 return abcd[1] == vendor[0] && abcd[3] == vendor[1] && abcd[2] == vendor[2];
1014}
1015
1016inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) {
1017 int abcd[4];
1018 l1 = l2 = l3 = 0;
1019 int cache_id = 0;
1020 int cache_type = 0;
1021 do {
1022 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
1023 EIGEN_CPUID(abcd, 0x4, cache_id);
1024 cache_type = (abcd[0] & 0x0F) >> 0;
1025 if (cache_type == 1 || cache_type == 3) // data or unified cache
1026 {
1027 int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
1028 int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
1029 int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
1030 int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
1031 int sets = (abcd[2]); // C[31:0]
1032
1033 int cache_size = (ways + 1) * (partitions + 1) * (line_size + 1) * (sets + 1);
1034
1035 switch (cache_level) {
1036 case 1:
1037 l1 = cache_size;
1038 break;
1039 case 2:
1040 l2 = cache_size;
1041 break;
1042 case 3:
1043 l3 = cache_size;
1044 break;
1045 default:
1046 break;
1047 }
1048 }
1049 cache_id++;
1050 } while (cache_type > 0 && cache_id < 16);
1051}
1052
1053inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) {
1054 int abcd[4];
1055 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
1056 l1 = l2 = l3 = 0;
1057 EIGEN_CPUID(abcd, 0x00000002, 0);
1058 unsigned char* bytes = reinterpret_cast<unsigned char*>(abcd) + 2;
1059 bool check_for_p2_core2 = false;
1060 for (int i = 0; i < 14; ++i) {
1061 switch (bytes[i]) {
1062 case 0x0A:
1063 l1 = 8;
1064 break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
1065 case 0x0C:
1066 l1 = 16;
1067 break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
1068 case 0x0E:
1069 l1 = 24;
1070 break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
1071 case 0x10:
1072 l1 = 16;
1073 break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
1074 case 0x15:
1075 l1 = 16;
1076 break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
1077 case 0x2C:
1078 l1 = 32;
1079 break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
1080 case 0x30:
1081 l1 = 32;
1082 break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
1083 case 0x60:
1084 l1 = 16;
1085 break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
1086 case 0x66:
1087 l1 = 8;
1088 break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
1089 case 0x67:
1090 l1 = 16;
1091 break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
1092 case 0x68:
1093 l1 = 32;
1094 break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
1095 case 0x1A:
1096 l2 = 96;
1097 break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
1098 case 0x22:
1099 l3 = 512;
1100 break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
1101 case 0x23:
1102 l3 = 1024;
1103 break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
1104 case 0x25:
1105 l3 = 2048;
1106 break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
1107 case 0x29:
1108 l3 = 4096;
1109 break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
1110 case 0x39:
1111 l2 = 128;
1112 break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
1113 case 0x3A:
1114 l2 = 192;
1115 break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
1116 case 0x3B:
1117 l2 = 128;
1118 break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
1119 case 0x3C:
1120 l2 = 256;
1121 break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
1122 case 0x3D:
1123 l2 = 384;
1124 break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
1125 case 0x3E:
1126 l2 = 512;
1127 break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
1128 case 0x40:
1129 l2 = 0;
1130 break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
1131 case 0x41:
1132 l2 = 128;
1133 break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
1134 case 0x42:
1135 l2 = 256;
1136 break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
1137 case 0x43:
1138 l2 = 512;
1139 break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
1140 case 0x44:
1141 l2 = 1024;
1142 break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
1143 case 0x45:
1144 l2 = 2048;
1145 break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
1146 case 0x46:
1147 l3 = 4096;
1148 break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
1149 case 0x47:
1150 l3 = 8192;
1151 break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
1152 case 0x48:
1153 l2 = 3072;
1154 break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
1155 case 0x49:
1156 if (l2 != 0)
1157 l3 = 4096;
1158 else {
1159 check_for_p2_core2 = true;
1160 l3 = l2 = 4096;
1161 }
1162 break; // code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
1163 case 0x4A:
1164 l3 = 6144;
1165 break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
1166 case 0x4B:
1167 l3 = 8192;
1168 break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
1169 case 0x4C:
1170 l3 = 12288;
1171 break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
1172 case 0x4D:
1173 l3 = 16384;
1174 break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
1175 case 0x4E:
1176 l2 = 6144;
1177 break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
1178 case 0x78:
1179 l2 = 1024;
1180 break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
1181 case 0x79:
1182 l2 = 128;
1183 break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
1184 case 0x7A:
1185 l2 = 256;
1186 break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
1187 case 0x7B:
1188 l2 = 512;
1189 break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
1190 case 0x7C:
1191 l2 = 1024;
1192 break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
1193 case 0x7D:
1194 l2 = 2048;
1195 break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
1196 case 0x7E:
1197 l2 = 256;
1198 break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
1199 case 0x7F:
1200 l2 = 512;
1201 break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
1202 case 0x80:
1203 l2 = 512;
1204 break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
1205 case 0x81:
1206 l2 = 128;
1207 break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
1208 case 0x82:
1209 l2 = 256;
1210 break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
1211 case 0x83:
1212 l2 = 512;
1213 break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
1214 case 0x84:
1215 l2 = 1024;
1216 break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
1217 case 0x85:
1218 l2 = 2048;
1219 break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
1220 case 0x86:
1221 l2 = 512;
1222 break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
1223 case 0x87:
1224 l2 = 1024;
1225 break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
1226 case 0x88:
1227 l3 = 2048;
1228 break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
1229 case 0x89:
1230 l3 = 4096;
1231 break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
1232 case 0x8A:
1233 l3 = 8192;
1234 break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
1235 case 0x8D:
1236 l3 = 3072;
1237 break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
1238
1239 default:
1240 break;
1241 }
1242 }
1243 if (check_for_p2_core2 && l2 == l3) l3 = 0;
1244 l1 *= 1024;
1245 l2 *= 1024;
1246 l3 *= 1024;
1247}
1248
1249inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) {
1250 if (max_std_funcs >= 4)
1251 queryCacheSizes_intel_direct(l1, l2, l3);
1252 else if (max_std_funcs >= 2)
1253 queryCacheSizes_intel_codes(l1, l2, l3);
1254 else
1255 l1 = l2 = l3 = 0;
1256}
1257
1258inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) {
1259 int abcd[4];
1260 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
1261
1262 // First query the max supported function.
1263 EIGEN_CPUID(abcd, 0x80000000, 0);
1264 if (static_cast<numext::uint32_t>(abcd[0]) >= static_cast<numext::uint32_t>(0x80000006)) {
1265 EIGEN_CPUID(abcd, 0x80000005, 0);
1266 l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
1267 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
1268 EIGEN_CPUID(abcd, 0x80000006, 0);
1269 l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
1270 l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
1271 } else {
1272 l1 = l2 = l3 = 0;
1273 }
1274}
1275#endif
1276
1279inline void queryCacheSizes(int& l1, int& l2, int& l3) {
1280#ifdef EIGEN_CPUID
1281 int abcd[4];
1282 const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
1283 const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
1284 const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
1285
1286 // identify the CPU vendor
1287 EIGEN_CPUID(abcd, 0x0, 0);
1288 int max_std_funcs = abcd[0];
1289 if (cpuid_is_vendor(abcd, GenuineIntel))
1290 queryCacheSizes_intel(l1, l2, l3, max_std_funcs);
1291 else if (cpuid_is_vendor(abcd, AuthenticAMD) || cpuid_is_vendor(abcd, AMDisbetter_))
1292 queryCacheSizes_amd(l1, l2, l3);
1293 else
1294 // by default let's use Intel's API
1295 queryCacheSizes_intel(l1, l2, l3, max_std_funcs);
1296
1297 // here is the list of other vendors:
1298 // ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
1299 // ||cpuid_is_vendor(abcd,"CyrixInstead")
1300 // ||cpuid_is_vendor(abcd,"CentaurHauls")
1301 // ||cpuid_is_vendor(abcd,"GenuineTMx86")
1302 // ||cpuid_is_vendor(abcd,"TransmetaCPU")
1303 // ||cpuid_is_vendor(abcd,"RiseRiseRise")
1304 // ||cpuid_is_vendor(abcd,"Geode by NSC")
1305 // ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
1306 // ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
1307 // ||cpuid_is_vendor(abcd,"NexGenDriven")
1308#else
1309 l1 = l2 = l3 = -1;
1310#endif
1311}
1312
1315inline int queryL1CacheSize() {
1316 int l1(-1), l2, l3;
1317 queryCacheSizes(l1, l2, l3);
1318 return l1;
1319}
1320
1323inline int queryTopLevelCacheSize() {
1324 int l1, l2(-1), l3(-1);
1325 queryCacheSizes(l1, l2, l3);
1326 return (std::max)(l2, l3);
1327}
1328
1332
1333#if EIGEN_COMP_CXXVER >= 20 && defined(__cpp_lib_constexpr_dynamic_alloc) && \
1334 __cpp_lib_constexpr_dynamic_alloc >= 201907L
1335using std::construct_at;
1336#else
1337template <class T, class... Args>
1338EIGEN_DEVICE_FUNC T* construct_at(T* p, Args&&... args) {
1339 return ::new (const_cast<void*>(static_cast<const volatile void*>(p))) T(std::forward<Args>(args)...);
1340}
1341#endif
1342
1348#if EIGEN_COMP_CXXVER >= 17
1349using std::destroy_at;
1350#else
1351template <class T>
1352EIGEN_DEVICE_FUNC void destroy_at(T* p) {
1353 p->~T();
1354}
1355#endif
1356
1360#ifndef EIGEN_ASSUME_ALIGNED
1361#if defined(__cpp_lib_assume_aligned) && (__cpp_lib_assume_aligned >= 201811L)
1362#define EIGEN_ASSUME_ALIGNED(PTR, ALIGN_BYTES) \
1363 { PTR = std::assume_aligned<ALIGN_BYTES>(PTR); }
1364#elif EIGEN_HAS_BUILTIN(__builtin_assume_aligned)
1365#define EIGEN_ASSUME_ALIGNED(PTR, ALIGN_BYTES) \
1366 { PTR = static_cast<decltype(PTR)>(__builtin_assume_aligned(PTR, ALIGN_BYTES)); }
1367#else
1368#define EIGEN_ASSUME_ALIGNED(PTR, ALIGN_BYTES) /* do nothing */
1369#endif
1370#endif
1371
1372} // end namespace internal
1373
1374} // end namespace Eigen
1375
1376#endif // EIGEN_MEMORY_H
Namespace containing all symbols from the Eigen library.
Definition B01_Experimental.dox:1
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:82
const int Dynamic
Definition Constants.h:25