Eigen  5.0.1-dev+60122df6
 
Loading...
Searching...
No Matches
EulerAngles.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2023 Juraj Oršulić, University of Zagreb <juraj.orsulic@fer.hr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_EULERANGLES_H
12#define EIGEN_EULERANGLES_H
13
14// IWYU pragma: private
15#include "./InternalHeaderCheck.h"
16
17namespace Eigen {
18
44template <typename Derived>
46 Index a0, Index a1, Index a2) const {
47 /* Implemented from Graphics Gems IV */
48 EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
49
51
52 const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1;
53 const Index i = a0;
54 const Index j = (a0 + 1 + odd) % 3;
55 const Index k = (a0 + 2 - odd) % 3;
56
57 if (a0 == a2) {
58 // Proper Euler angles (same first and last axis).
59 // The i, j, k indices enable addressing the input matrix as the XYX archetype matrix (see Graphics Gems IV),
60 // where e.g. coeff(k, i) means third column, first row in the XYX archetype matrix:
61 // c2 s2s1 s2c1
62 // s2s3 -c2s1s3 + c1c3 -c2c1s3 - s1c3
63 // -s2c3 c2s1c3 + c1s3 c2c1c3 - s1s3
64
65 // Note: s2 is always positive.
66 Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
67 if (odd) {
68 res[0] = numext::atan2(coeff(j, i), coeff(k, i));
69 // s2 is always positive, so res[1] will be within the canonical [0, pi] range
70 res[1] = numext::atan2(s2, coeff(i, i));
71 } else {
72 // In the !odd case, signs of all three angles are flipped at the very end. To keep the solution within the
73 // canonical range, we flip the solution and make res[1] always negative here (since s2 is always positive,
74 // -atan2(s2, c2) will always be negative). The final flip at the end due to !odd will thus make res[1] positive
75 // and canonical. NB: in the general case, there are two correct solutions, but only one is canonical. For proper
76 // Euler angles, flipping from one solution to the other involves flipping the sign of the second angle res[1] and
77 // adding/subtracting pi to the first and third angles. The addition/subtraction of pi to the first angle res[0]
78 // is handled here by flipping the signs of arguments to atan2, while the calculation of the third angle does not
79 // need special adjustment since it uses the adjusted res[0] as the input and produces a correct result.
80 res[0] = numext::atan2(-coeff(j, i), -coeff(k, i));
81 res[1] = -numext::atan2(s2, coeff(i, i));
82 }
83
84 // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
85 // we can compute their respective rotation, and apply its inverse to M. Since the result must
86 // be a rotation around x, we have:
87 //
88 // c2 s1.s2 c1.s2 1 0 0
89 // 0 c1 -s1 * M = 0 c3 s3
90 // -s2 s1.c2 c1.c2 0 -s3 c3
91 //
92 // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
93
94 Scalar s1 = numext::sin(res[0]);
95 Scalar c1 = numext::cos(res[0]);
96 res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j));
97 } else {
98 // Tait-Bryan angles (all three axes are different; typically used for yaw-pitch-roll calculations).
99 // The i, j, k indices enable addressing the input matrix as the XYZ archetype matrix (see Graphics Gems IV),
100 // where e.g. coeff(k, i) means third column, first row in the XYZ archetype matrix:
101 // c2c3 s2s1c3 - c1s3 s2c1c3 + s1s3
102 // c2s3 s2s1s3 + c1c3 s2c1s3 - s1c3
103 // -s2 c2s1 c2c1
104
105 res[0] = numext::atan2(coeff(j, k), coeff(k, k));
106
107 Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j));
108 // c2 is always positive, so the following atan2 will always return a result in the correct canonical middle angle
109 // range [-pi/2, pi/2]
110 res[1] = numext::atan2(-coeff(i, k), c2);
111
112 Scalar s1 = numext::sin(res[0]);
113 Scalar c1 = numext::cos(res[0]);
114 res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j));
115 }
116 if (!odd) {
117 res = -res;
118 }
119
120 return res;
121}
122
135template <typename Derived>
137 Index a0, Index a1, Index a2) const {
138 /* Implemented from Graphics Gems IV */
139 EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
140
142
143 const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1;
144 const Index i = a0;
145 const Index j = (a0 + 1 + odd) % 3;
146 const Index k = (a0 + 2 - odd) % 3;
147
148 if (a0 == a2) {
149 res[0] = numext::atan2(coeff(j, i), coeff(k, i));
150 if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0))) {
151 if (res[0] > Scalar(0)) {
152 res[0] -= Scalar(EIGEN_PI);
153 } else {
154 res[0] += Scalar(EIGEN_PI);
155 }
156
157 Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
158 res[1] = -numext::atan2(s2, coeff(i, i));
159 } else {
160 Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
161 res[1] = numext::atan2(s2, coeff(i, i));
162 }
163
164 // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
165 // we can compute their respective rotation, and apply its inverse to M. Since the result must
166 // be a rotation around x, we have:
167 //
168 // c2 s1.s2 c1.s2 1 0 0
169 // 0 c1 -s1 * M = 0 c3 s3
170 // -s2 s1.c2 c1.c2 0 -s3 c3
171 //
172 // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
173
174 Scalar s1 = numext::sin(res[0]);
175 Scalar c1 = numext::cos(res[0]);
176 res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j));
177 } else {
178 res[0] = numext::atan2(coeff(j, k), coeff(k, k));
179 Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j));
180 if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0))) {
181 if (res[0] > Scalar(0)) {
182 res[0] -= Scalar(EIGEN_PI);
183 } else {
184 res[0] += Scalar(EIGEN_PI);
185 }
186 res[1] = numext::atan2(-coeff(i, k), -c2);
187 } else {
188 res[1] = numext::atan2(-coeff(i, k), c2);
189 }
190 Scalar s1 = numext::sin(res[0]);
191 Scalar c1 = numext::cos(res[0]);
192 res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j));
193 }
194 if (!odd) {
195 res = -res;
196 }
197
198 return res;
199}
200
201} // end namespace Eigen
202
203#endif // EIGEN_EULERANGLES_H
internal::traits< Derived >::Scalar Scalar
Definition DenseBase.h:62
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186
Matrix< Scalar, 3, 1 > eulerAngles(Index a0, Index a1, Index a2) const
Definition EulerAngles.h:136
Matrix< Scalar, 3, 1 > canonicalEulerAngles(Index a0, Index a1, Index a2) const
Definition EulerAngles.h:45
Namespace containing all symbols from the Eigen library.
Definition B01_Experimental.dox:1
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:82