Eigen-unsupported  5.0.1-dev+284dcc12
 
Loading...
Searching...
No Matches
TensorVolumePatch.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3
4#ifndef EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
5#define EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
6
7// IWYU pragma: private
8#include "./InternalHeaderCheck.h"
9
10namespace Eigen {
11
12namespace internal {
13
14template <DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
15struct traits<TensorVolumePatchOp<Planes, Rows, Cols, XprType> > : public traits<XprType> {
16 typedef std::remove_const_t<typename XprType::Scalar> Scalar;
17 typedef traits<XprType> XprTraits;
18 typedef typename XprTraits::StorageKind StorageKind;
19 typedef typename XprTraits::Index Index;
20 typedef typename XprType::Nested Nested;
21 typedef std::remove_reference_t<Nested> Nested_;
22 static constexpr int NumDimensions = XprTraits::NumDimensions + 1;
23 static constexpr int Layout = XprTraits::Layout;
24 typedef typename XprTraits::PointerType PointerType;
25};
26
27template <DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
28struct eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, Eigen::Dense> {
29 typedef const TensorVolumePatchOp<Planes, Rows, Cols, XprType>& type;
30};
31
32template <DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
33struct nested<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, 1,
34 typename eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType> >::type> {
35 typedef TensorVolumePatchOp<Planes, Rows, Cols, XprType> type;
36};
37
38} // end namespace internal
39
55template <DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
56class TensorVolumePatchOp : public TensorBase<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, ReadOnlyAccessors> {
57 public:
58 typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Scalar Scalar;
59 typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
60 typedef typename XprType::CoeffReturnType CoeffReturnType;
61 typedef typename Eigen::internal::nested<TensorVolumePatchOp>::type Nested;
62 typedef typename Eigen::internal::traits<TensorVolumePatchOp>::StorageKind StorageKind;
63 typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Index Index;
64
65 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(
66 const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
67 DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_plane_strides,
68 DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex plane_inflate_strides,
69 DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, PaddingType padding_type, Scalar padding_value)
70 : m_xpr(expr),
71 m_patch_planes(patch_planes),
72 m_patch_rows(patch_rows),
73 m_patch_cols(patch_cols),
74 m_plane_strides(plane_strides),
75 m_row_strides(row_strides),
76 m_col_strides(col_strides),
77 m_in_plane_strides(in_plane_strides),
78 m_in_row_strides(in_row_strides),
79 m_in_col_strides(in_col_strides),
80 m_plane_inflate_strides(plane_inflate_strides),
81 m_row_inflate_strides(row_inflate_strides),
82 m_col_inflate_strides(col_inflate_strides),
83 m_padding_explicit(false),
84 m_padding_top_z(0),
85 m_padding_bottom_z(0),
86 m_padding_top(0),
87 m_padding_bottom(0),
88 m_padding_left(0),
89 m_padding_right(0),
90 m_padding_type(padding_type),
91 m_padding_value(padding_value) {}
92
93 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(
94 const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
95 DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_plane_strides,
96 DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex plane_inflate_strides,
97 DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, DenseIndex padding_top_z,
98 DenseIndex padding_bottom_z, DenseIndex padding_top, DenseIndex padding_bottom, DenseIndex padding_left,
99 DenseIndex padding_right, Scalar padding_value)
100 : m_xpr(expr),
101 m_patch_planes(patch_planes),
102 m_patch_rows(patch_rows),
103 m_patch_cols(patch_cols),
104 m_plane_strides(plane_strides),
105 m_row_strides(row_strides),
106 m_col_strides(col_strides),
107 m_in_plane_strides(in_plane_strides),
108 m_in_row_strides(in_row_strides),
109 m_in_col_strides(in_col_strides),
110 m_plane_inflate_strides(plane_inflate_strides),
111 m_row_inflate_strides(row_inflate_strides),
112 m_col_inflate_strides(col_inflate_strides),
113 m_padding_explicit(true),
114 m_padding_top_z(padding_top_z),
115 m_padding_bottom_z(padding_bottom_z),
116 m_padding_top(padding_top),
117 m_padding_bottom(padding_bottom),
118 m_padding_left(padding_left),
119 m_padding_right(padding_right),
120 m_padding_type(PADDING_VALID),
121 m_padding_value(padding_value) {}
122
123 EIGEN_DEVICE_FUNC DenseIndex patch_planes() const { return m_patch_planes; }
124 EIGEN_DEVICE_FUNC DenseIndex patch_rows() const { return m_patch_rows; }
125 EIGEN_DEVICE_FUNC DenseIndex patch_cols() const { return m_patch_cols; }
126 EIGEN_DEVICE_FUNC DenseIndex plane_strides() const { return m_plane_strides; }
127 EIGEN_DEVICE_FUNC DenseIndex row_strides() const { return m_row_strides; }
128 EIGEN_DEVICE_FUNC DenseIndex col_strides() const { return m_col_strides; }
129 EIGEN_DEVICE_FUNC DenseIndex in_plane_strides() const { return m_in_plane_strides; }
130 EIGEN_DEVICE_FUNC DenseIndex in_row_strides() const { return m_in_row_strides; }
131 EIGEN_DEVICE_FUNC DenseIndex in_col_strides() const { return m_in_col_strides; }
132 EIGEN_DEVICE_FUNC DenseIndex plane_inflate_strides() const { return m_plane_inflate_strides; }
133 EIGEN_DEVICE_FUNC DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
134 EIGEN_DEVICE_FUNC DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
135 EIGEN_DEVICE_FUNC bool padding_explicit() const { return m_padding_explicit; }
136 EIGEN_DEVICE_FUNC DenseIndex padding_top_z() const { return m_padding_top_z; }
137 EIGEN_DEVICE_FUNC DenseIndex padding_bottom_z() const { return m_padding_bottom_z; }
138 EIGEN_DEVICE_FUNC DenseIndex padding_top() const { return m_padding_top; }
139 EIGEN_DEVICE_FUNC DenseIndex padding_bottom() const { return m_padding_bottom; }
140 EIGEN_DEVICE_FUNC DenseIndex padding_left() const { return m_padding_left; }
141 EIGEN_DEVICE_FUNC DenseIndex padding_right() const { return m_padding_right; }
142 EIGEN_DEVICE_FUNC PaddingType padding_type() const { return m_padding_type; }
143 EIGEN_DEVICE_FUNC Scalar padding_value() const { return m_padding_value; }
144
145 EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; }
146
147 protected:
148 typename XprType::Nested m_xpr;
149 const DenseIndex m_patch_planes;
150 const DenseIndex m_patch_rows;
151 const DenseIndex m_patch_cols;
152 const DenseIndex m_plane_strides;
153 const DenseIndex m_row_strides;
154 const DenseIndex m_col_strides;
155 const DenseIndex m_in_plane_strides;
156 const DenseIndex m_in_row_strides;
157 const DenseIndex m_in_col_strides;
158 const DenseIndex m_plane_inflate_strides;
159 const DenseIndex m_row_inflate_strides;
160 const DenseIndex m_col_inflate_strides;
161 const bool m_padding_explicit;
162 const DenseIndex m_padding_top_z;
163 const DenseIndex m_padding_bottom_z;
164 const DenseIndex m_padding_top;
165 const DenseIndex m_padding_bottom;
166 const DenseIndex m_padding_left;
167 const DenseIndex m_padding_right;
168 const PaddingType m_padding_type;
169 const Scalar m_padding_value;
170};
171
172// Eval as rvalue
173template <DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
174struct TensorEvaluator<const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, Device> {
176 typedef typename XprType::Index Index;
177 static constexpr int NumInputDims =
178 internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
179 static constexpr int NumDims = NumInputDims + 1;
180 typedef DSizes<Index, NumDims> Dimensions;
181 typedef std::remove_const_t<typename XprType::Scalar> Scalar;
182 typedef typename XprType::CoeffReturnType CoeffReturnType;
183 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
184 static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
185 typedef StorageMemory<CoeffReturnType, Device> Storage;
186 typedef typename Storage::Type EvaluatorPointerType;
187
188 static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
189 enum {
190 IsAligned = false,
191 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
192 BlockAccess = false,
194 CoordAccess = false,
195 RawAccess = false
196 };
197
198 //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
199 typedef internal::TensorBlockNotImplemented TensorBlock;
200 //===--------------------------------------------------------------------===//
201
202 EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) {
203 EIGEN_STATIC_ASSERT((NumDims >= 5), YOU_MADE_A_PROGRAMMING_MISTAKE);
204
205 m_paddingValue = op.padding_value();
206
207 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
208
209 // Cache a few variables.
210 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
211 m_inputDepth = input_dims[0];
212 m_inputPlanes = input_dims[1];
213 m_inputRows = input_dims[2];
214 m_inputCols = input_dims[3];
215 } else {
216 m_inputDepth = input_dims[NumInputDims - 1];
217 m_inputPlanes = input_dims[NumInputDims - 2];
218 m_inputRows = input_dims[NumInputDims - 3];
219 m_inputCols = input_dims[NumInputDims - 4];
220 }
221
222 m_plane_strides = op.plane_strides();
223 m_row_strides = op.row_strides();
224 m_col_strides = op.col_strides();
225
226 // Input strides and effective input/patch size
227 m_in_plane_strides = op.in_plane_strides();
228 m_in_row_strides = op.in_row_strides();
229 m_in_col_strides = op.in_col_strides();
230 m_plane_inflate_strides = op.plane_inflate_strides();
231 m_row_inflate_strides = op.row_inflate_strides();
232 m_col_inflate_strides = op.col_inflate_strides();
233
234 // The "effective" spatial size after inflating data with zeros.
235 m_input_planes_eff = (m_inputPlanes - 1) * m_plane_inflate_strides + 1;
236 m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
237 m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
238 m_patch_planes_eff = op.patch_planes() + (op.patch_planes() - 1) * (m_in_plane_strides - 1);
239 m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
240 m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
241
242 if (op.padding_explicit()) {
243 m_outputPlanes =
244 numext::ceil((m_input_planes_eff + op.padding_top_z() + op.padding_bottom_z() - m_patch_planes_eff + 1.f) /
245 static_cast<float>(m_plane_strides));
246 m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) /
247 static_cast<float>(m_row_strides));
248 m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) /
249 static_cast<float>(m_col_strides));
250 m_planePaddingTop = op.padding_top_z();
251 m_rowPaddingTop = op.padding_top();
252 m_colPaddingLeft = op.padding_left();
253 } else {
254 // Computing padding from the type
255 switch (op.padding_type()) {
256 case PADDING_VALID:
257 m_outputPlanes =
258 numext::ceil((m_input_planes_eff - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
259 m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
260 m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
261 m_planePaddingTop = 0;
262 m_rowPaddingTop = 0;
263 m_colPaddingLeft = 0;
264 break;
265 case PADDING_SAME: {
266 m_outputPlanes = numext::ceil(m_input_planes_eff / static_cast<float>(m_plane_strides));
267 m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
268 m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
269 const Index dz = (m_outputPlanes - 1) * m_plane_strides + m_patch_planes_eff - m_input_planes_eff;
270 const Index dy = (m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff;
271 const Index dx = (m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff;
272 m_planePaddingTop = dz / 2;
273 m_rowPaddingTop = dy / 2;
274 m_colPaddingLeft = dx / 2;
275 break;
276 }
277 default: {
278 eigen_assert(false && "unexpected padding");
279 return;
280 }
281 }
282 }
283 eigen_assert(m_outputRows > 0);
284 eigen_assert(m_outputCols > 0);
285 eigen_assert(m_outputPlanes > 0);
286
287 // Dimensions for result of extraction.
288 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
289 // ColMajor
290 // 0: depth
291 // 1: patch_planes
292 // 2: patch_rows
293 // 3: patch_cols
294 // 4: number of patches
295 // 5 and beyond: anything else (such as batch).
296 m_dimensions[0] = input_dims[0];
297 m_dimensions[1] = op.patch_planes();
298 m_dimensions[2] = op.patch_rows();
299 m_dimensions[3] = op.patch_cols();
300 m_dimensions[4] = m_outputPlanes * m_outputRows * m_outputCols;
301 for (int i = 5; i < NumDims; ++i) {
302 m_dimensions[i] = input_dims[i - 1];
303 }
304 } else {
305 // RowMajor
306 // NumDims-1: depth
307 // NumDims-2: patch_planes
308 // NumDims-3: patch_rows
309 // NumDims-4: patch_cols
310 // NumDims-5: number of patches
311 // NumDims-6 and beyond: anything else (such as batch).
312 m_dimensions[NumDims - 1] = input_dims[NumInputDims - 1];
313 m_dimensions[NumDims - 2] = op.patch_planes();
314 m_dimensions[NumDims - 3] = op.patch_rows();
315 m_dimensions[NumDims - 4] = op.patch_cols();
316 m_dimensions[NumDims - 5] = m_outputPlanes * m_outputRows * m_outputCols;
317 for (int i = NumDims - 6; i >= 0; --i) {
318 m_dimensions[i] = input_dims[i];
319 }
320 }
321
322 // Strides for the output tensor.
323 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
324 m_rowStride = m_dimensions[1];
325 m_colStride = m_dimensions[2] * m_rowStride;
326 m_patchStride = m_colStride * m_dimensions[3] * m_dimensions[0];
327 m_otherStride = m_patchStride * m_dimensions[4];
328 } else {
329 m_rowStride = m_dimensions[NumDims - 2];
330 m_colStride = m_dimensions[NumDims - 3] * m_rowStride;
331 m_patchStride = m_colStride * m_dimensions[NumDims - 4] * m_dimensions[NumDims - 1];
332 m_otherStride = m_patchStride * m_dimensions[NumDims - 5];
333 }
334
335 // Strides for navigating through the input tensor.
336 m_planeInputStride = m_inputDepth;
337 m_rowInputStride = m_inputDepth * m_inputPlanes;
338 m_colInputStride = m_inputDepth * m_inputRows * m_inputPlanes;
339 m_otherInputStride = m_inputDepth * m_inputRows * m_inputCols * m_inputPlanes;
340
341 m_outputPlanesRows = m_outputPlanes * m_outputRows;
342
343 // Fast representations of different variables.
344 m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
345
346 m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
347 m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
348 m_fastRowStride = internal::TensorIntDivisor<Index>(m_rowStride);
349 m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
350 m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
351 m_fastInputPlaneStride = internal::TensorIntDivisor<Index>(m_plane_inflate_strides);
352 m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
353 m_fastOutputPlanes = internal::TensorIntDivisor<Index>(m_outputPlanes);
354 m_fastOutputPlanesRows = internal::TensorIntDivisor<Index>(m_outputPlanesRows);
355
356 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
357 m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
358 } else {
359 m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims - 1]);
360 }
361 }
362
363 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
364
365 EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) {
366 m_impl.evalSubExprsIfNeeded(NULL);
367 return true;
368 }
369
370#ifdef EIGEN_USE_THREADS
371 template <typename EvalSubExprsCallback>
372 EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType /*data*/, EvalSubExprsCallback done) {
373 m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
374 }
375#endif // EIGEN_USE_THREADS
376
377 EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); }
378
379 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
380 // Patch index corresponding to the passed in index.
381 const Index patchIndex = index / m_fastPatchStride;
382
383 // Spatial offset within the patch. This has to be translated into 3D
384 // coordinates within the patch.
385 const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
386
387 // Batch, etc.
388 const Index otherIndex = (NumDims == 5) ? 0 : index / m_fastOtherStride;
389 const Index patch3DIndex = (NumDims == 5) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
390
391 // Calculate column index in the input original tensor.
392 const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
393 const Index colOffset = patchOffset / m_fastColStride;
394 const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
395 const Index origInputCol =
396 (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
397 if (inputCol < 0 || inputCol >= m_input_cols_eff ||
398 ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
399 return Scalar(m_paddingValue);
400 }
401
402 // Calculate row index in the original input tensor.
403 const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
404 const Index rowOffset = (patchOffset - colOffset * m_colStride) / m_fastRowStride;
405 const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
406 const Index origInputRow =
407 (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
408 if (inputRow < 0 || inputRow >= m_input_rows_eff ||
409 ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
410 return Scalar(m_paddingValue);
411 }
412
413 // Calculate plane index in the original input tensor.
414 const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
415 const Index planeOffset = patchOffset - colOffset * m_colStride - rowOffset * m_rowStride;
416 const Index inputPlane = planeIndex * m_plane_strides + planeOffset * m_in_plane_strides - m_planePaddingTop;
417 const Index origInputPlane =
418 (m_plane_inflate_strides == 1) ? inputPlane : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0);
419 if (inputPlane < 0 || inputPlane >= m_input_planes_eff ||
420 ((m_plane_inflate_strides != 1) && (inputPlane != origInputPlane * m_plane_inflate_strides))) {
421 return Scalar(m_paddingValue);
422 }
423
424 const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
425 const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
426
427 const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride +
428 origInputPlane * m_planeInputStride + otherIndex * m_otherInputStride;
429
430 return m_impl.coeff(inputIndex);
431 }
432
433 template <int LoadMode>
434 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
435 eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
436
437 if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1 ||
438 m_in_plane_strides != 1 || m_plane_inflate_strides != 1) {
439 return packetWithPossibleZero(index);
440 }
441
442 const Index indices[2] = {index, index + PacketSize - 1};
443 const Index patchIndex = indices[0] / m_fastPatchStride;
444 if (patchIndex != indices[1] / m_fastPatchStride) {
445 return packetWithPossibleZero(index);
446 }
447 const Index otherIndex = (NumDims == 5) ? 0 : indices[0] / m_fastOtherStride;
448 eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
449
450 // Find the offset of the element wrt the location of the first element.
451 Index first_entry = (indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth;
452 Index second_entry = PacketSize == 1 ? first_entry :
453 (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth;
454
455 const Index patchOffsets[2] = {first_entry, second_entry};
456
457 const Index patch3DIndex =
458 (NumDims == 5) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
459 eigen_assert(patch3DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
460
461 const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
462 const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
463
464 // Calculate col indices in the original input tensor.
465 const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft,
466 colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
467 if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
468 return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
469 }
470
471 if (inputCols[0] != inputCols[1]) {
472 return packetWithPossibleZero(index);
473 }
474
475 const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
476 const Index rowOffsets[2] = {(patchOffsets[0] - colOffsets[0] * m_colStride) / m_fastRowStride,
477 (patchOffsets[1] - colOffsets[1] * m_colStride) / m_fastRowStride};
478 eigen_assert(rowOffsets[0] <= rowOffsets[1]);
479 // Calculate col indices in the original input tensor.
480 const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop,
481 rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
482
483 if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
484 return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
485 }
486
487 if (inputRows[0] != inputRows[1]) {
488 return packetWithPossibleZero(index);
489 }
490
491 const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
492 const Index planeOffsets[2] = {patchOffsets[0] - colOffsets[0] * m_colStride - rowOffsets[0] * m_rowStride,
493 patchOffsets[1] - colOffsets[1] * m_colStride - rowOffsets[1] * m_rowStride};
494 eigen_assert(planeOffsets[0] <= planeOffsets[1]);
495 const Index inputPlanes[2] = {planeIndex * m_plane_strides + planeOffsets[0] - m_planePaddingTop,
496 planeIndex * m_plane_strides + planeOffsets[1] - m_planePaddingTop};
497
498 if (inputPlanes[1] < 0 || inputPlanes[0] >= m_inputPlanes) {
499 return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
500 }
501
502 if (inputPlanes[0] >= 0 && inputPlanes[1] < m_inputPlanes) {
503 // no padding
504 const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
505 const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
506 const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride +
507 m_planeInputStride * inputPlanes[0] + otherIndex * m_otherInputStride;
508 return m_impl.template packet<Unaligned>(inputIndex);
509 }
510
511 return packetWithPossibleZero(index);
512 }
513
514 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
515 const double compute_cost =
516 10 * TensorOpCost::DivCost<Index>() + 21 * TensorOpCost::MulCost<Index>() + 8 * TensorOpCost::AddCost<Index>();
517 return TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
518 }
519
520 EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
521
522 const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
523
524 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index planePaddingTop() const { return m_planePaddingTop; }
525 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowPaddingTop() const { return m_rowPaddingTop; }
526 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colPaddingLeft() const { return m_colPaddingLeft; }
527 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputPlanes() const { return m_outputPlanes; }
528 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputRows() const { return m_outputRows; }
529 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index outputCols() const { return m_outputCols; }
530 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userPlaneStride() const { return m_plane_strides; }
531 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userRowStride() const { return m_row_strides; }
532 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userColStride() const { return m_col_strides; }
533 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInPlaneStride() const { return m_in_plane_strides; }
534 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInRowStride() const { return m_in_row_strides; }
535 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index userInColStride() const { return m_in_col_strides; }
536 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index planeInflateStride() const { return m_plane_inflate_strides; }
537 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowInflateStride() const { return m_row_inflate_strides; }
538 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colInflateStride() const { return m_col_inflate_strides; }
539
540 protected:
541 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const {
542 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
543 EIGEN_UNROLL_LOOP
544 for (int i = 0; i < PacketSize; ++i) {
545 values[i] = coeff(index + i);
546 }
547 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
548 return rslt;
549 }
550
551 Dimensions m_dimensions;
552
553 // Parameters passed to the constructor.
554 Index m_plane_strides;
555 Index m_row_strides;
556 Index m_col_strides;
557
558 Index m_outputPlanes;
559 Index m_outputRows;
560 Index m_outputCols;
561
562 Index m_planePaddingTop;
563 Index m_rowPaddingTop;
564 Index m_colPaddingLeft;
565
566 Index m_in_plane_strides;
567 Index m_in_row_strides;
568 Index m_in_col_strides;
569
570 Index m_plane_inflate_strides;
571 Index m_row_inflate_strides;
572 Index m_col_inflate_strides;
573
574 // Cached input size.
575 Index m_inputDepth;
576 Index m_inputPlanes;
577 Index m_inputRows;
578 Index m_inputCols;
579
580 // Other cached variables.
581 Index m_outputPlanesRows;
582
583 // Effective input/patch post-inflation size.
584 Index m_input_planes_eff;
585 Index m_input_rows_eff;
586 Index m_input_cols_eff;
587 Index m_patch_planes_eff;
588 Index m_patch_rows_eff;
589 Index m_patch_cols_eff;
590
591 // Strides for the output tensor.
592 Index m_otherStride;
593 Index m_patchStride;
594 Index m_rowStride;
595 Index m_colStride;
596
597 // Strides for the input tensor.
598 Index m_planeInputStride;
599 Index m_rowInputStride;
600 Index m_colInputStride;
601 Index m_otherInputStride;
602
603 internal::TensorIntDivisor<Index> m_fastOtherStride;
604 internal::TensorIntDivisor<Index> m_fastPatchStride;
605 internal::TensorIntDivisor<Index> m_fastColStride;
606 internal::TensorIntDivisor<Index> m_fastRowStride;
607 internal::TensorIntDivisor<Index> m_fastInputPlaneStride;
608 internal::TensorIntDivisor<Index> m_fastInputRowStride;
609 internal::TensorIntDivisor<Index> m_fastInputColStride;
610 internal::TensorIntDivisor<Index> m_fastInputColsEff;
611 internal::TensorIntDivisor<Index> m_fastOutputPlanesRows;
612 internal::TensorIntDivisor<Index> m_fastOutputPlanes;
613 internal::TensorIntDivisor<Index> m_fastOutputDepth;
614
615 Scalar m_paddingValue;
616
617 TensorEvaluator<ArgType, Device> m_impl;
618};
619
620} // end namespace Eigen
621
622#endif // EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
The tensor base class.
Definition TensorForwardDeclarations.h:68
Patch extraction specialized for processing of volumetric data. This assumes that the input has a lea...
Definition TensorVolumePatch.h:56
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:30