11#ifndef EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
12#define EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
14#include "./InternalHeaderCheck.h"
19template <
typename ReverseDimensions,
typename XprType>
20struct traits<TensorReverseOp<ReverseDimensions, XprType> > :
public traits<XprType> {
21 typedef typename XprType::Scalar Scalar;
22 typedef traits<XprType> XprTraits;
23 typedef typename XprTraits::StorageKind StorageKind;
24 typedef typename XprTraits::Index
Index;
25 typedef typename XprType::Nested Nested;
26 typedef std::remove_reference_t<Nested> Nested_;
27 static constexpr int NumDimensions = XprTraits::NumDimensions;
28 static constexpr int Layout = XprTraits::Layout;
29 typedef typename XprTraits::PointerType PointerType;
32template <
typename ReverseDimensions,
typename XprType>
33struct eval<TensorReverseOp<ReverseDimensions, XprType>, Eigen::Dense> {
34 typedef const TensorReverseOp<ReverseDimensions, XprType>& type;
37template <
typename ReverseDimensions,
typename XprType>
38struct nested<TensorReverseOp<ReverseDimensions, XprType>, 1,
39 typename eval<TensorReverseOp<ReverseDimensions, XprType> >::type> {
40 typedef TensorReverseOp<ReverseDimensions, XprType> type;
51template <
typename ReverseDimensions,
typename XprType>
52class TensorReverseOp :
public TensorBase<TensorReverseOp<ReverseDimensions, XprType>, WriteAccessors> {
55 typedef typename Eigen::internal::traits<TensorReverseOp>::Scalar Scalar;
57 typedef typename XprType::CoeffReturnType CoeffReturnType;
58 typedef typename Eigen::internal::nested<TensorReverseOp>::type Nested;
59 typedef typename Eigen::internal::traits<TensorReverseOp>::StorageKind StorageKind;
60 typedef typename Eigen::internal::traits<TensorReverseOp>::Index Index;
62 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp(
const XprType& expr,
const ReverseDimensions& reverse_dims)
63 : m_xpr(expr), m_reverse_dims(reverse_dims) {}
65 EIGEN_DEVICE_FUNC
const ReverseDimensions& reverse()
const {
return m_reverse_dims; }
67 EIGEN_DEVICE_FUNC
const internal::remove_all_t<typename XprType::Nested>& expression()
const {
return m_xpr; }
69 EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorReverseOp)
72 typename XprType::Nested m_xpr;
73 const ReverseDimensions m_reverse_dims;
77template <
typename ReverseDimensions,
typename ArgType,
typename Device>
80 typedef typename XprType::Index
Index;
81 static constexpr int NumDims = internal::array_size<ReverseDimensions>::value;
83 typedef typename XprType::Scalar
Scalar;
85 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
86 static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
87 typedef StorageMemory<CoeffReturnType, Device> Storage;
88 typedef typename Storage::Type EvaluatorPointerType;
90 static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
93 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
94 BlockAccess = NumDims > 0,
95 PreferBlockAccess =
true,
100 typedef internal::TensorIntDivisor<Index> IndexDivisor;
103 typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
104 typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
106 typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock ArgTensorBlock;
108 typedef typename internal::TensorMaterializedBlock<CoeffReturnType, NumDims, Layout, Index> TensorBlock;
111 EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device& device)
112 : m_impl(op.expression(), device), m_reverse(op.reverse()), m_device(device) {
114 EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
117 m_dimensions = m_impl.dimensions();
118 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
120 for (
int i = 1; i < NumDims; ++i) {
121 m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
122 if (m_strides[i] > 0) m_fastStrides[i] = IndexDivisor(m_strides[i]);
125 m_strides[NumDims - 1] = 1;
126 for (
int i = NumDims - 2; i >= 0; --i) {
127 m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
128 if (m_strides[i] > 0) m_fastStrides[i] = IndexDivisor(m_strides[i]);
133 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
135 EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(EvaluatorPointerType) {
136 m_impl.evalSubExprsIfNeeded(NULL);
140#ifdef EIGEN_USE_THREADS
141 template <
typename EvalSubExprsCallback>
142 EIGEN_STRONG_INLINE
void evalSubExprsIfNeededAsync(EvaluatorPointerType, EvalSubExprsCallback done) {
143 m_impl.evalSubExprsIfNeededAsync(
nullptr, [done](
bool) { done(
true); });
147 EIGEN_STRONG_INLINE
void cleanup() { m_impl.cleanup(); }
149 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index reverseIndex(Index index)
const {
150 eigen_assert(index < dimensions().TotalSize());
151 Index inputIndex = 0;
152 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
154 for (
int i = NumDims - 1; i > 0; --i) {
155 Index idx = index / m_fastStrides[i];
156 index -= idx * m_strides[i];
158 idx = m_dimensions[i] - idx - 1;
160 inputIndex += idx * m_strides[i];
163 inputIndex += (m_dimensions[0] - index - 1);
169 for (
int i = 0; i < NumDims - 1; ++i) {
170 Index idx = index / m_fastStrides[i];
171 index -= idx * m_strides[i];
173 idx = m_dimensions[i] - idx - 1;
175 inputIndex += idx * m_strides[i];
177 if (m_reverse[NumDims - 1]) {
178 inputIndex += (m_dimensions[NumDims - 1] - index - 1);
186 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const {
187 return m_impl.coeff(reverseIndex(index));
190 template <
int LoadMode>
191 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const {
192 eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
196 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
198 for (
int i = 0; i < PacketSize; ++i) {
199 values[i] = coeff(index + i);
201 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
205 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements()
const {
206 const size_t target_size = m_device.lastLevelCacheSize();
209 return internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size).addCostPerCoeff({0, 0, 24});
212 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
213 bool =
false)
const {
221 static const bool isColMajor =
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor);
223 static const Index inner_dim_idx = isColMajor ? 0 : NumDims - 1;
224 const bool inner_dim_reversed = m_reverse[inner_dim_idx];
227 Index block_offset = 0;
230 Index input_offset = reverseIndex(desc.offset());
234 array<BlockIteratorState, NumDims> it;
235 for (
int i = 0; i < NumDims; ++i) {
236 const int dim = isColMajor ? i : NumDims - 1 - i;
237 it[i].size = desc.dimension(dim);
239 it[i].reverse = m_reverse[dim];
241 it[i].block_stride = i == 0 ? 1 : (it[i - 1].size * it[i - 1].block_stride);
242 it[i].block_span = it[i].block_stride * (it[i].size - 1);
244 it[i].input_stride = m_strides[dim];
245 it[i].input_span = it[i].input_stride * (it[i].size - 1);
248 it[i].input_stride = -1 * it[i].input_stride;
249 it[i].input_span = -1 * it[i].input_span;
255 int effective_inner_dim = 0;
256 for (
int i = 1; i < NumDims; ++i) {
257 if (it[i].reverse != it[effective_inner_dim].reverse)
break;
258 if (it[i].block_stride != it[effective_inner_dim].size)
break;
259 if (it[i].block_stride != numext::abs(it[i].input_stride))
break;
261 it[i].size = it[effective_inner_dim].size * it[i].size;
263 it[i].block_stride = 1;
264 it[i].input_stride = (inner_dim_reversed ? -1 : 1);
266 it[i].block_span = it[i].block_stride * (it[i].size - 1);
267 it[i].input_span = it[i].input_stride * (it[i].size - 1);
269 effective_inner_dim = i;
272 eigen_assert(it[effective_inner_dim].block_stride == 1);
273 eigen_assert(it[effective_inner_dim].input_stride == (inner_dim_reversed ? -1 : 1));
275 const Index inner_dim_size = it[effective_inner_dim].size;
278 const typename TensorBlock::Storage block_storage = TensorBlock::prepareStorage(desc, scratch);
279 CoeffReturnType* block_buffer = block_storage.data();
281 while (it[NumDims - 1].count < it[NumDims - 1].size) {
283 Index dst = block_offset;
284 Index src = input_offset;
288 if (inner_dim_reversed) {
289 for (Index i = 0; i < inner_dim_size; ++i) {
290 block_buffer[dst] = m_impl.coeff(src);
295 for (Index i = 0; i < inner_dim_size; ++i) {
296 block_buffer[dst] = m_impl.coeff(src);
303 if ((NumDims - effective_inner_dim) == 1)
break;
306 for (Index i = effective_inner_dim + 1; i < NumDims; ++i) {
307 if (++it[i].count < it[i].size) {
308 block_offset += it[i].block_stride;
309 input_offset += it[i].input_stride;
312 if (i != NumDims - 1) it[i].count = 0;
313 block_offset -= it[i].block_span;
314 input_offset -= it[i].input_span;
318 return block_storage.AsTensorMaterializedBlock();
321 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(
bool vectorized)
const {
322 double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
323 TensorOpCost::DivCost<Index>());
324 for (
int i = 0; i < NumDims; ++i) {
326 compute_cost += 2 * TensorOpCost::AddCost<Index>();
329 return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost,
false , PacketSize);
332 EIGEN_DEVICE_FUNC
typename Storage::Type data()
const {
return NULL; }
335 Dimensions m_dimensions;
336 array<Index, NumDims> m_strides;
337 array<IndexDivisor, NumDims> m_fastStrides;
338 TensorEvaluator<ArgType, Device> m_impl;
339 ReverseDimensions m_reverse;
340 const Device EIGEN_DEVICE_REF m_device;
343 struct BlockIteratorState {
345 : size(0), count(0), reverse(false), block_stride(0), block_span(0), input_stride(0), input_span(0) {}
359template <
typename ReverseDimensions,
typename ArgType,
typename Device>
361 :
public TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device> {
362 typedef TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device> Base;
363 typedef TensorReverseOp<ReverseDimensions, ArgType> XprType;
364 typedef typename XprType::Index Index;
365 static constexpr int NumDims = internal::array_size<ReverseDimensions>::value;
366 typedef DSizes<Index, NumDims> Dimensions;
368 static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
371 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
373 PreferBlockAccess =
false,
377 EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device& device) : Base(op, device) {}
379 typedef typename XprType::Scalar Scalar;
380 typedef typename XprType::CoeffReturnType CoeffReturnType;
381 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
382 static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
385 typedef internal::TensorBlockNotImplemented TensorBlock;
388 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return this->m_dimensions; }
390 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
const {
391 return this->m_impl.coeffRef(this->reverseIndex(index));
394 template <
int StoreMode>
395 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void writePacket(Index index,
const PacketReturnType& x)
const {
396 eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
399 EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize];
400 internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
402 for (
int i = 0; i < PacketSize; ++i) {
403 this->coeffRef(index + i) = values[i];
The tensor base class.
Definition TensorForwardDeclarations.h:68
Tensor reverse elements class.
Definition TensorReverse.h:52
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:30