10#ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
11#define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
14#include "./InternalHeaderCheck.h"
19template <
typename Str
ides,
typename XprType>
20struct traits<TensorInflationOp<Strides, XprType> > :
public traits<XprType> {
21 typedef typename XprType::Scalar Scalar;
22 typedef traits<XprType> XprTraits;
23 typedef typename XprTraits::StorageKind StorageKind;
24 typedef typename XprTraits::Index
Index;
25 typedef typename XprType::Nested Nested;
26 typedef std::remove_reference_t<Nested> Nested_;
27 static constexpr int NumDimensions = XprTraits::NumDimensions;
28 static constexpr int Layout = XprTraits::Layout;
29 typedef typename XprTraits::PointerType PointerType;
32template <
typename Str
ides,
typename XprType>
33struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense> {
34 typedef const TensorInflationOp<Strides, XprType>& type;
37template <
typename Str
ides,
typename XprType>
38struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type> {
39 typedef TensorInflationOp<Strides, XprType> type;
49template <
typename Str
ides,
typename XprType>
50class TensorInflationOp :
public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors> {
52 typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar;
54 typedef typename XprType::CoeffReturnType CoeffReturnType;
55 typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested;
56 typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind;
57 typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index;
59 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(
const XprType& expr,
const Strides& strides)
60 : m_xpr(expr), m_strides(strides) {}
62 EIGEN_DEVICE_FUNC
const Strides& strides()
const {
return m_strides; }
64 EIGEN_DEVICE_FUNC
const internal::remove_all_t<typename XprType::Nested>& expression()
const {
return m_xpr; }
67 typename XprType::Nested m_xpr;
68 const Strides m_strides;
72template <
typename Str
ides,
typename ArgType,
typename Device>
75 typedef typename XprType::Index
Index;
76 static constexpr int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
78 typedef typename XprType::Scalar
Scalar;
80 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
81 static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
82 typedef StorageMemory<CoeffReturnType, Device> Storage;
83 typedef typename Storage::Type EvaluatorPointerType;
85 static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
88 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
90 PreferBlockAccess =
false,
96 typedef internal::TensorBlockNotImplemented TensorBlock;
99 EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device& device)
100 : m_impl(op.expression(), device), m_strides(op.strides()) {
101 m_dimensions = m_impl.dimensions();
103 for (
int i = 0; i < NumDims; ++i) {
104 m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1;
108 for (
int i = 0; i < NumDims; ++i) {
109 m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]);
112 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
113 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
114 m_outputStrides[0] = 1;
115 m_inputStrides[0] = 1;
116 for (
int i = 1; i < NumDims; ++i) {
117 m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
118 m_inputStrides[i] = m_inputStrides[i - 1] * input_dims[i - 1];
121 m_outputStrides[NumDims - 1] = 1;
122 m_inputStrides[NumDims - 1] = 1;
123 for (
int i = NumDims - 2; i >= 0; --i) {
124 m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
125 m_inputStrides[i] = m_inputStrides[i + 1] * input_dims[i + 1];
130 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
132 EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(EvaluatorPointerType ) {
133 m_impl.evalSubExprsIfNeeded(NULL);
136 EIGEN_STRONG_INLINE
void cleanup() { m_impl.cleanup(); }
140 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool getInputIndex(Index index, Index* inputIndex)
const {
141 eigen_assert(index < dimensions().TotalSize());
143 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
145 for (
int i = NumDims - 1; i > 0; --i) {
146 const Index idx = index / m_outputStrides[i];
147 if (idx != idx / m_fastStrides[i] * m_strides[i]) {
150 *inputIndex += idx / m_strides[i] * m_inputStrides[i];
151 index -= idx * m_outputStrides[i];
153 if (index != index / m_fastStrides[0] * m_strides[0]) {
156 *inputIndex += index / m_strides[0];
160 for (
int i = 0; i < NumDims - 1; ++i) {
161 const Index idx = index / m_outputStrides[i];
162 if (idx != idx / m_fastStrides[i] * m_strides[i]) {
165 *inputIndex += idx / m_strides[i] * m_inputStrides[i];
166 index -= idx * m_outputStrides[i];
168 if (index != index / m_fastStrides[NumDims - 1] * m_strides[NumDims - 1]) {
171 *inputIndex += index / m_strides[NumDims - 1];
176 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const {
177 Index inputIndex = 0;
178 if (getInputIndex(index, &inputIndex)) {
179 return m_impl.coeff(inputIndex);
187 template <
int LoadMode>
188 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const {
189 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
190 eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
192 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
194 for (
int i = 0; i < PacketSize; ++i) {
195 values[i] = coeff(index + i);
197 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
201 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(
bool vectorized)
const {
202 const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() + 3 * TensorOpCost::MulCost<Index>() +
203 2 * TensorOpCost::AddCost<Index>());
204 const double input_size = m_impl.dimensions().TotalSize();
205 const double output_size = m_dimensions.TotalSize();
206 if (output_size == 0)
return TensorOpCost();
207 return m_impl.costPerCoeff(vectorized) +
208 TensorOpCost(
sizeof(CoeffReturnType) * input_size / output_size, 0, compute_cost, vectorized, PacketSize);
211 EIGEN_DEVICE_FUNC EvaluatorPointerType data()
const {
return NULL; }
214 Dimensions m_dimensions;
215 array<Index, NumDims> m_outputStrides;
216 array<Index, NumDims> m_inputStrides;
217 TensorEvaluator<ArgType, Device> m_impl;
218 const Strides m_strides;
219 array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides;
The tensor base class.
Definition TensorForwardDeclarations.h:68
Tensor inflation class.
Definition TensorInflation.h:50
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:30