Eigen-unsupported  5.0.1-dev+284dcc12
 
Loading...
Searching...
No Matches
TensorInflation.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2015 Ke Yang <yangke@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
11#define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
12
13// IWYU pragma: private
14#include "./InternalHeaderCheck.h"
15
16namespace Eigen {
17
18namespace internal {
19template <typename Strides, typename XprType>
20struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType> {
21 typedef typename XprType::Scalar Scalar;
22 typedef traits<XprType> XprTraits;
23 typedef typename XprTraits::StorageKind StorageKind;
24 typedef typename XprTraits::Index Index;
25 typedef typename XprType::Nested Nested;
26 typedef std::remove_reference_t<Nested> Nested_;
27 static constexpr int NumDimensions = XprTraits::NumDimensions;
28 static constexpr int Layout = XprTraits::Layout;
29 typedef typename XprTraits::PointerType PointerType;
30};
31
32template <typename Strides, typename XprType>
33struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense> {
34 typedef const TensorInflationOp<Strides, XprType>& type;
35};
36
37template <typename Strides, typename XprType>
38struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type> {
39 typedef TensorInflationOp<Strides, XprType> type;
40};
41
42} // end namespace internal
43
49template <typename Strides, typename XprType>
50class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors> {
51 public:
52 typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar;
53 typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
54 typedef typename XprType::CoeffReturnType CoeffReturnType;
55 typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested;
56 typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind;
57 typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index;
58
59 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(const XprType& expr, const Strides& strides)
60 : m_xpr(expr), m_strides(strides) {}
61
62 EIGEN_DEVICE_FUNC const Strides& strides() const { return m_strides; }
63
64 EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; }
65
66 protected:
67 typename XprType::Nested m_xpr;
68 const Strides m_strides;
69};
70
71// Eval as rvalue
72template <typename Strides, typename ArgType, typename Device>
73struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device> {
75 typedef typename XprType::Index Index;
76 static constexpr int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
77 typedef DSizes<Index, NumDims> Dimensions;
78 typedef typename XprType::Scalar Scalar;
79 typedef typename XprType::CoeffReturnType CoeffReturnType;
80 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
81 static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
82 typedef StorageMemory<CoeffReturnType, Device> Storage;
83 typedef typename Storage::Type EvaluatorPointerType;
84
85 static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
86 enum {
87 IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
88 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
89 BlockAccess = false,
90 PreferBlockAccess = false,
91 CoordAccess = false, // to be implemented
92 RawAccess = false
93 };
94
95 //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
96 typedef internal::TensorBlockNotImplemented TensorBlock;
97 //===--------------------------------------------------------------------===//
98
99 EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
100 : m_impl(op.expression(), device), m_strides(op.strides()) {
101 m_dimensions = m_impl.dimensions();
102 // Expand each dimension to the inflated dimension.
103 for (int i = 0; i < NumDims; ++i) {
104 m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1;
105 }
106
107 // Remember the strides for fast division.
108 for (int i = 0; i < NumDims; ++i) {
109 m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]);
110 }
111
112 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
113 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
114 m_outputStrides[0] = 1;
115 m_inputStrides[0] = 1;
116 for (int i = 1; i < NumDims; ++i) {
117 m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
118 m_inputStrides[i] = m_inputStrides[i - 1] * input_dims[i - 1];
119 }
120 } else { // RowMajor
121 m_outputStrides[NumDims - 1] = 1;
122 m_inputStrides[NumDims - 1] = 1;
123 for (int i = NumDims - 2; i >= 0; --i) {
124 m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
125 m_inputStrides[i] = m_inputStrides[i + 1] * input_dims[i + 1];
126 }
127 }
128 }
129
130 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
131
132 EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType /*data*/) {
133 m_impl.evalSubExprsIfNeeded(NULL);
134 return true;
135 }
136 EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); }
137
138 // Computes the input index given the output index. Returns true if the output
139 // index doesn't fall into a hole.
140 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index* inputIndex) const {
141 eigen_assert(index < dimensions().TotalSize());
142 *inputIndex = 0;
143 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
144 EIGEN_UNROLL_LOOP
145 for (int i = NumDims - 1; i > 0; --i) {
146 const Index idx = index / m_outputStrides[i];
147 if (idx != idx / m_fastStrides[i] * m_strides[i]) {
148 return false;
149 }
150 *inputIndex += idx / m_strides[i] * m_inputStrides[i];
151 index -= idx * m_outputStrides[i];
152 }
153 if (index != index / m_fastStrides[0] * m_strides[0]) {
154 return false;
155 }
156 *inputIndex += index / m_strides[0];
157 return true;
158 } else {
159 EIGEN_UNROLL_LOOP
160 for (int i = 0; i < NumDims - 1; ++i) {
161 const Index idx = index / m_outputStrides[i];
162 if (idx != idx / m_fastStrides[i] * m_strides[i]) {
163 return false;
164 }
165 *inputIndex += idx / m_strides[i] * m_inputStrides[i];
166 index -= idx * m_outputStrides[i];
167 }
168 if (index != index / m_fastStrides[NumDims - 1] * m_strides[NumDims - 1]) {
169 return false;
170 }
171 *inputIndex += index / m_strides[NumDims - 1];
172 }
173 return true;
174 }
175
176 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
177 Index inputIndex = 0;
178 if (getInputIndex(index, &inputIndex)) {
179 return m_impl.coeff(inputIndex);
180 } else {
181 return Scalar(0);
182 }
183 }
184
185 // TODO(yangke): optimize this function so that we can detect and produce
186 // all-zero packets
187 template <int LoadMode>
188 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
189 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
190 eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
191
192 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
193 EIGEN_UNROLL_LOOP
194 for (int i = 0; i < PacketSize; ++i) {
195 values[i] = coeff(index + i);
196 }
197 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
198 return rslt;
199 }
200
201 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
202 const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() + 3 * TensorOpCost::MulCost<Index>() +
203 2 * TensorOpCost::AddCost<Index>());
204 const double input_size = m_impl.dimensions().TotalSize();
205 const double output_size = m_dimensions.TotalSize();
206 if (output_size == 0) return TensorOpCost();
207 return m_impl.costPerCoeff(vectorized) +
208 TensorOpCost(sizeof(CoeffReturnType) * input_size / output_size, 0, compute_cost, vectorized, PacketSize);
209 }
210
211 EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
212
213 protected:
214 Dimensions m_dimensions;
215 array<Index, NumDims> m_outputStrides;
216 array<Index, NumDims> m_inputStrides;
217 TensorEvaluator<ArgType, Device> m_impl;
218 const Strides m_strides;
219 array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides;
220};
221
222} // end namespace Eigen
223
224#endif // EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
The tensor base class.
Definition TensorForwardDeclarations.h:68
Tensor inflation class.
Definition TensorInflation.h:50
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:30