10#ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
11#define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
14#include "./InternalHeaderCheck.h"
19template <DenseIndex DimId,
typename XprType>
20struct traits<TensorChippingOp<DimId, XprType> > :
public traits<XprType> {
21 typedef typename XprType::Scalar Scalar;
22 typedef traits<XprType> XprTraits;
23 typedef typename XprTraits::StorageKind StorageKind;
24 typedef typename XprTraits::Index
Index;
25 typedef typename XprType::Nested Nested;
26 typedef std::remove_reference_t<Nested> Nested_;
27 static constexpr int NumDimensions = XprTraits::NumDimensions - 1;
28 static constexpr int Layout = XprTraits::Layout;
29 typedef typename XprTraits::PointerType PointerType;
32template <DenseIndex DimId,
typename XprType>
33struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense> {
34 typedef const TensorChippingOp<DimId, XprType> EIGEN_DEVICE_REF type;
37template <DenseIndex DimId,
typename XprType>
38struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type> {
39 typedef TensorChippingOp<DimId, XprType> type;
42template <DenseIndex DimId>
44 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) {
45 EIGEN_UNUSED_VARIABLE(dim);
46 eigen_assert(dim == DimId);
48 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim()
const {
return DimId; }
52 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) { eigen_assert(dim >= 0); }
53 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim()
const {
return actual_dim; }
56 const DenseIndex actual_dim;
64template <DenseIndex DimId,
typename XprType>
65class TensorChippingOp :
public TensorBase<TensorChippingOp<DimId, XprType> > {
68 typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar;
70 typedef typename XprType::CoeffReturnType CoeffReturnType;
71 typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested;
72 typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
73 typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;
75 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(
const XprType& expr,
const Index offset,
const Index dim)
76 : m_xpr(expr), m_offset(offset), m_dim(dim) {
77 eigen_assert(dim < XprType::NumDimensions && dim >= 0 &&
"Chip_Dim_out_of_range");
80 EIGEN_DEVICE_FUNC
const Index offset()
const {
return m_offset; }
81 EIGEN_DEVICE_FUNC
const Index dim()
const {
return m_dim.actualDim(); }
83 EIGEN_DEVICE_FUNC
const internal::remove_all_t<typename XprType::Nested>& expression()
const {
return m_xpr; }
85 EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorChippingOp)
88 typename XprType::Nested m_xpr;
90 const internal::DimensionId<DimId> m_dim;
94template <DenseIndex DimId,
typename ArgType,
typename Device>
97 static constexpr int NumInputDims =
98 internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
99 static constexpr int NumDims = NumInputDims - 1;
100 typedef typename XprType::Index
Index;
102 typedef typename XprType::Scalar
Scalar;
104 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
105 static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
106 typedef StorageMemory<CoeffReturnType, Device> Storage;
107 typedef typename Storage::Type EvaluatorPointerType;
108 static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
114 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
118 IsOuterChipping = (Layout ==
ColMajor && DimId == NumInputDims - 1) || (Layout ==
RowMajor && DimId == 0),
120 IsInnerChipping = (Layout ==
ColMajor && DimId == 0) || (Layout ==
RowMajor && DimId == NumInputDims - 1),
128 typedef std::remove_const_t<Scalar> ScalarNoConst;
131 typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
132 typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
134 typedef internal::TensorBlockDescriptor<NumInputDims, Index> ArgTensorBlockDesc;
135 typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock ArgTensorBlock;
137 typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims, Layout, Index> TensorBlock;
140 EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device& device)
141 : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device) {
142 EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
143 eigen_assert(NumInputDims > m_dim.actualDim());
145 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
146 eigen_assert(op.offset() < input_dims[m_dim.actualDim()]);
149 for (
int i = 0; i < NumInputDims; ++i) {
150 if (i != m_dim.actualDim()) {
151 m_dimensions[j] = input_dims[i];
158 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
159 for (
int i = 0; i < m_dim.actualDim(); ++i) {
160 m_stride *= input_dims[i];
161 m_inputStride *= input_dims[i];
164 for (
int i = NumInputDims - 1; i > m_dim.actualDim(); --i) {
165 m_stride *= input_dims[i];
166 m_inputStride *= input_dims[i];
169 m_inputStride *= input_dims[m_dim.actualDim()];
170 m_inputOffset = m_stride * op.offset();
174 Index after_chipped_dim_product = 1;
175 for (
int i =
static_cast<int>(m_dim.actualDim()) + 1; i < NumInputDims; ++i) {
176 after_chipped_dim_product *= input_dims[i];
179 Index before_chipped_dim_product = 1;
180 for (
int i = 0; i < m_dim.actualDim(); ++i) {
181 before_chipped_dim_product *= input_dims[i];
184 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
185 m_isEffectivelyInnerChipping = before_chipped_dim_product == 1;
186 m_isEffectivelyOuterChipping = after_chipped_dim_product == 1;
188 m_isEffectivelyInnerChipping = after_chipped_dim_product == 1;
189 m_isEffectivelyOuterChipping = before_chipped_dim_product == 1;
193 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
195 EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(EvaluatorPointerType) {
196 m_impl.evalSubExprsIfNeeded(NULL);
200#ifdef EIGEN_USE_THREADS
201 template <
typename EvalSubExprsCallback>
202 EIGEN_STRONG_INLINE
void evalSubExprsIfNeededAsync(EvaluatorPointerType , EvalSubExprsCallback done) {
203 m_impl.evalSubExprsIfNeededAsync(
nullptr, [done](
bool) { done(
true); });
207 EIGEN_STRONG_INLINE
void cleanup() { m_impl.cleanup(); }
209 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const {
210 return m_impl.coeff(srcCoeff(index));
213 template <
int LoadMode>
214 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const {
215 eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
217 if (isInnerChipping()) {
219 eigen_assert(m_stride == 1);
220 Index inputIndex = index * m_inputStride + m_inputOffset;
221 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
223 for (
int i = 0; i < PacketSize; ++i) {
224 values[i] = m_impl.coeff(inputIndex);
225 inputIndex += m_inputStride;
227 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
229 }
else if (isOuterChipping()) {
231 eigen_assert(m_stride > index);
232 return m_impl.template packet<LoadMode>(index + m_inputOffset);
234 const Index idx = index / m_stride;
235 const Index rem = index - idx * m_stride;
236 if (rem + PacketSize <= m_stride) {
237 Index inputIndex = idx * m_inputStride + m_inputOffset + rem;
238 return m_impl.template packet<LoadMode>(inputIndex);
241 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
243 for (
int i = 0; i < PacketSize; ++i) {
244 values[i] = coeff(index);
247 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
253 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(
bool vectorized)
const {
255 if ((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor) && m_dim.actualDim() == 0) ||
256 (
static_cast<int>(Layout) ==
static_cast<int>(
RowMajor) && m_dim.actualDim() == NumInputDims - 1)) {
257 cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
258 }
else if ((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor) && m_dim.actualDim() == NumInputDims - 1) ||
259 (
static_cast<int>(Layout) ==
static_cast<int>(
RowMajor) && m_dim.actualDim() == 0)) {
260 cost += TensorOpCost::AddCost<Index>();
262 cost += 3 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() + 3 * TensorOpCost::AddCost<Index>();
265 return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cost, vectorized, PacketSize);
268 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements()
const {
269 const size_t target_size = m_device.lastLevelCacheSize();
270 return internal::TensorBlockResourceRequirements::merge(
271 internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size), m_impl.getResourceRequirements());
274 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
275 bool root_of_expr_ast =
false)
const {
276 const Index chip_dim = m_dim.actualDim();
278 DSizes<Index, NumInputDims> input_block_dims;
279 for (
int i = 0; i < NumInputDims; ++i) {
280 input_block_dims[i] = i < chip_dim ? desc.dimension(i) : i > chip_dim ? desc.dimension(i - 1) : 1;
283 ArgTensorBlockDesc arg_desc(srcCoeff(desc.offset()), input_block_dims);
286 if (desc.HasDestinationBuffer()) {
287 DSizes<Index, NumInputDims> arg_destination_strides;
288 for (
int i = 0; i < NumInputDims; ++i) {
289 arg_destination_strides[i] = i < chip_dim ? desc.destination().strides()[i]
290 : i > chip_dim ? desc.destination().strides()[i - 1]
294 arg_desc.template AddDestinationBuffer<Layout>(desc.destination().template data<ScalarNoConst>(),
295 arg_destination_strides);
298 ArgTensorBlock arg_block = m_impl.block(arg_desc, scratch, root_of_expr_ast);
299 if (!arg_desc.HasDestinationBuffer()) desc.DropDestinationBuffer();
301 if (arg_block.data() != NULL) {
303 return TensorBlock(arg_block.kind(), arg_block.data(), desc.dimensions());
309 const typename TensorBlock::Storage block_storage = TensorBlock::prepareStorage(desc, scratch);
311 typedef internal::TensorBlockAssignment<ScalarNoConst, NumInputDims, typename ArgTensorBlock::XprType, Index>
312 TensorBlockAssignment;
314 TensorBlockAssignment::Run(
315 TensorBlockAssignment::target(arg_desc.dimensions(), internal::strides<Layout>(arg_desc.dimensions()),
316 block_storage.data()),
319 return block_storage.AsTensorMaterializedBlock();
323 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename Storage::Type data()
const {
324 typename Storage::Type result = constCast(m_impl.data());
325 if (isOuterChipping() && result) {
326 return result + m_inputOffset;
333 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index)
const {
335 if (isInnerChipping()) {
337 eigen_assert(m_stride == 1);
338 inputIndex = index * m_inputStride + m_inputOffset;
339 }
else if (isOuterChipping()) {
342 eigen_assert(m_stride > index);
343 inputIndex = index + m_inputOffset;
345 const Index idx = index / m_stride;
346 inputIndex = idx * m_inputStride + m_inputOffset;
347 index -= idx * m_stride;
353 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool isInnerChipping()
const {
354 return IsInnerChipping || m_isEffectivelyInnerChipping;
357 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool isOuterChipping()
const {
358 return IsOuterChipping || m_isEffectivelyOuterChipping;
361 Dimensions m_dimensions;
365 TensorEvaluator<ArgType, Device> m_impl;
366 const internal::DimensionId<DimId> m_dim;
367 const Device EIGEN_DEVICE_REF m_device;
371 bool m_isEffectivelyInnerChipping;
372 bool m_isEffectivelyOuterChipping;
376template <DenseIndex DimId,
typename ArgType,
typename Device>
378 :
public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> {
379 typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base;
380 typedef TensorChippingOp<DimId, ArgType> XprType;
381 static constexpr int NumInputDims =
382 internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
383 static constexpr int NumDims = NumInputDims - 1;
384 typedef typename XprType::Index Index;
385 typedef DSizes<Index, NumDims> Dimensions;
386 typedef typename XprType::Scalar Scalar;
387 typedef typename XprType::CoeffReturnType CoeffReturnType;
388 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
389 static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
393 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
394 BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess,
395 Layout = TensorEvaluator<ArgType, Device>::Layout,
400 typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
403 EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device& device) : Base(op, device) {}
405 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
const {
406 return this->m_impl.coeffRef(this->srcCoeff(index));
409 template <
int StoreMode>
410 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void writePacket(Index index,
const PacketReturnType& x)
const {
411 if (this->isInnerChipping()) {
413 eigen_assert(this->m_stride == 1);
414 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
415 internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
416 Index inputIndex = index * this->m_inputStride + this->m_inputOffset;
418 for (
int i = 0; i < PacketSize; ++i) {
419 this->m_impl.coeffRef(inputIndex) = values[i];
420 inputIndex += this->m_inputStride;
422 }
else if (this->isOuterChipping()) {
424 eigen_assert(this->m_stride > index);
425 this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x);
427 const Index idx = index / this->m_stride;
428 const Index rem = index - idx * this->m_stride;
429 if (rem + PacketSize <= this->m_stride) {
430 const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem;
431 this->m_impl.template writePacket<StoreMode>(inputIndex, x);
434 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
435 internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
437 for (
int i = 0; i < PacketSize; ++i) {
438 this->coeffRef(index) = values[i];
445 template <
typename TensorBlock>
446 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void writeBlock(
const TensorBlockDesc& desc,
const TensorBlock& block) {
447 eigen_assert(this->m_impl.data() != NULL);
449 const Index chip_dim = this->m_dim.actualDim();
451 DSizes<Index, NumInputDims> input_block_dims;
452 for (
int i = 0; i < NumInputDims; ++i) {
453 input_block_dims[i] = i < chip_dim ? desc.dimension(i) : i > chip_dim ? desc.dimension(i - 1) : 1;
456 typedef TensorReshapingOp<const DSizes<Index, NumInputDims>,
const typename TensorBlock::XprType> TensorBlockExpr;
458 typedef internal::TensorBlockAssignment<Scalar, NumInputDims, TensorBlockExpr, Index> TensorBlockAssign;
460 TensorBlockAssign::Run(
461 TensorBlockAssign::target(input_block_dims, internal::strides<Layout>(this->m_impl.dimensions()),
462 this->m_impl.data(), this->srcCoeff(desc.offset())),
463 block.expr().reshape(input_block_dims));
The tensor base class.
Definition TensorForwardDeclarations.h:68
Definition TensorChipping.h:65
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:30