Eigen-unsupported  5.0.1-dev+284dcc12
 
Loading...
Searching...
No Matches
TensorChipping.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
11#define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
12
13// IWYU pragma: private
14#include "./InternalHeaderCheck.h"
15
16namespace Eigen {
17
18namespace internal {
19template <DenseIndex DimId, typename XprType>
20struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType> {
21 typedef typename XprType::Scalar Scalar;
22 typedef traits<XprType> XprTraits;
23 typedef typename XprTraits::StorageKind StorageKind;
24 typedef typename XprTraits::Index Index;
25 typedef typename XprType::Nested Nested;
26 typedef std::remove_reference_t<Nested> Nested_;
27 static constexpr int NumDimensions = XprTraits::NumDimensions - 1;
28 static constexpr int Layout = XprTraits::Layout;
29 typedef typename XprTraits::PointerType PointerType;
30};
31
32template <DenseIndex DimId, typename XprType>
33struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense> {
34 typedef const TensorChippingOp<DimId, XprType> EIGEN_DEVICE_REF type;
35};
36
37template <DenseIndex DimId, typename XprType>
38struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type> {
39 typedef TensorChippingOp<DimId, XprType> type;
40};
41
42template <DenseIndex DimId>
43struct DimensionId {
44 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) {
45 EIGEN_UNUSED_VARIABLE(dim);
46 eigen_assert(dim == DimId);
47 }
48 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { return DimId; }
49};
50template <>
51struct DimensionId<Dynamic> {
52 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) { eigen_assert(dim >= 0); }
53 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { return actual_dim; }
54
55 private:
56 const DenseIndex actual_dim;
57};
58
59} // end namespace internal
60
64template <DenseIndex DimId, typename XprType>
65class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> > {
66 public:
68 typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar;
69 typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
70 typedef typename XprType::CoeffReturnType CoeffReturnType;
71 typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested;
72 typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
73 typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;
74
75 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim)
76 : m_xpr(expr), m_offset(offset), m_dim(dim) {
77 eigen_assert(dim < XprType::NumDimensions && dim >= 0 && "Chip_Dim_out_of_range");
78 }
79
80 EIGEN_DEVICE_FUNC const Index offset() const { return m_offset; }
81 EIGEN_DEVICE_FUNC const Index dim() const { return m_dim.actualDim(); }
82
83 EIGEN_DEVICE_FUNC const internal::remove_all_t<typename XprType::Nested>& expression() const { return m_xpr; }
84
85 EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorChippingOp)
86
87 protected:
88 typename XprType::Nested m_xpr;
89 const Index m_offset;
90 const internal::DimensionId<DimId> m_dim;
91};
92
93// Eval as rvalue
94template <DenseIndex DimId, typename ArgType, typename Device>
95struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> {
97 static constexpr int NumInputDims =
98 internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
99 static constexpr int NumDims = NumInputDims - 1;
100 typedef typename XprType::Index Index;
101 typedef DSizes<Index, NumDims> Dimensions;
102 typedef typename XprType::Scalar Scalar;
103 typedef typename XprType::CoeffReturnType CoeffReturnType;
104 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
105 static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
106 typedef StorageMemory<CoeffReturnType, Device> Storage;
107 typedef typename Storage::Type EvaluatorPointerType;
108 static constexpr int Layout = TensorEvaluator<ArgType, Device>::Layout;
109
110 enum {
111 // Alignment can't be guaranteed at compile time since it depends on the
112 // slice offsets.
113 IsAligned = false,
114 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
116 // Chipping of outer-most dimension is a trivial operation, because we can
117 // read and write directly from the underlying tensor using single offset.
118 IsOuterChipping = (Layout == ColMajor && DimId == NumInputDims - 1) || (Layout == RowMajor && DimId == 0),
119 // Chipping inner-most dimension.
120 IsInnerChipping = (Layout == ColMajor && DimId == 0) || (Layout == RowMajor && DimId == NumInputDims - 1),
121 // Prefer block access if the underlying expression prefers it, otherwise
122 // only if chipping is not trivial.
123 PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess || !IsOuterChipping,
124 CoordAccess = false, // to be implemented
125 RawAccess = false
126 };
127
128 typedef std::remove_const_t<Scalar> ScalarNoConst;
129
130 //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
131 typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
132 typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
133
134 typedef internal::TensorBlockDescriptor<NumInputDims, Index> ArgTensorBlockDesc;
135 typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock ArgTensorBlock;
136
137 typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims, Layout, Index> TensorBlock;
138 //===--------------------------------------------------------------------===//
139
140 EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
141 : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device) {
142 EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
143 eigen_assert(NumInputDims > m_dim.actualDim());
144
145 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
146 eigen_assert(op.offset() < input_dims[m_dim.actualDim()]);
147
148 int j = 0;
149 for (int i = 0; i < NumInputDims; ++i) {
150 if (i != m_dim.actualDim()) {
151 m_dimensions[j] = input_dims[i];
152 ++j;
153 }
154 }
155
156 m_stride = 1;
157 m_inputStride = 1;
158 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
159 for (int i = 0; i < m_dim.actualDim(); ++i) {
160 m_stride *= input_dims[i];
161 m_inputStride *= input_dims[i];
162 }
163 } else {
164 for (int i = NumInputDims - 1; i > m_dim.actualDim(); --i) {
165 m_stride *= input_dims[i];
166 m_inputStride *= input_dims[i];
167 }
168 }
169 m_inputStride *= input_dims[m_dim.actualDim()];
170 m_inputOffset = m_stride * op.offset();
171
172 // Check if chipping is effectively inner or outer: products of dimensions
173 // before or after the chipped dimension is `1`.
174 Index after_chipped_dim_product = 1;
175 for (int i = static_cast<int>(m_dim.actualDim()) + 1; i < NumInputDims; ++i) {
176 after_chipped_dim_product *= input_dims[i];
177 }
178
179 Index before_chipped_dim_product = 1;
180 for (int i = 0; i < m_dim.actualDim(); ++i) {
181 before_chipped_dim_product *= input_dims[i];
182 }
183
184 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
185 m_isEffectivelyInnerChipping = before_chipped_dim_product == 1;
186 m_isEffectivelyOuterChipping = after_chipped_dim_product == 1;
187 } else {
188 m_isEffectivelyInnerChipping = after_chipped_dim_product == 1;
189 m_isEffectivelyOuterChipping = before_chipped_dim_product == 1;
190 }
191 }
192
193 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
194
195 EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
196 m_impl.evalSubExprsIfNeeded(NULL);
197 return true;
198 }
199
200#ifdef EIGEN_USE_THREADS
201 template <typename EvalSubExprsCallback>
202 EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType /*data*/, EvalSubExprsCallback done) {
203 m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
204 }
205#endif // EIGEN_USE_THREADS
206
207 EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); }
208
209 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
210 return m_impl.coeff(srcCoeff(index));
211 }
212
213 template <int LoadMode>
214 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const {
215 eigen_assert(index + PacketSize - 1 < dimensions().TotalSize());
216
217 if (isInnerChipping()) {
218 // m_stride is equal to 1, so let's avoid the integer division.
219 eigen_assert(m_stride == 1);
220 Index inputIndex = index * m_inputStride + m_inputOffset;
221 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
222 EIGEN_UNROLL_LOOP
223 for (int i = 0; i < PacketSize; ++i) {
224 values[i] = m_impl.coeff(inputIndex);
225 inputIndex += m_inputStride;
226 }
227 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
228 return rslt;
229 } else if (isOuterChipping()) {
230 // m_stride is always greater than index, so let's avoid the integer division.
231 eigen_assert(m_stride > index);
232 return m_impl.template packet<LoadMode>(index + m_inputOffset);
233 } else {
234 const Index idx = index / m_stride;
235 const Index rem = index - idx * m_stride;
236 if (rem + PacketSize <= m_stride) {
237 Index inputIndex = idx * m_inputStride + m_inputOffset + rem;
238 return m_impl.template packet<LoadMode>(inputIndex);
239 } else {
240 // Cross the stride boundary. Fallback to slow path.
241 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
242 EIGEN_UNROLL_LOOP
243 for (int i = 0; i < PacketSize; ++i) {
244 values[i] = coeff(index);
245 ++index;
246 }
247 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
248 return rslt;
249 }
250 }
251 }
252
253 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
254 double cost = 0;
255 if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
256 (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims - 1)) {
257 cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
258 } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims - 1) ||
259 (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
260 cost += TensorOpCost::AddCost<Index>();
261 } else {
262 cost += 3 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() + 3 * TensorOpCost::AddCost<Index>();
263 }
264
265 return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cost, vectorized, PacketSize);
266 }
267
268 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const {
269 const size_t target_size = m_device.lastLevelCacheSize();
270 return internal::TensorBlockResourceRequirements::merge(
271 internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size), m_impl.getResourceRequirements());
272 }
273
274 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
275 bool root_of_expr_ast = false) const {
276 const Index chip_dim = m_dim.actualDim();
277
278 DSizes<Index, NumInputDims> input_block_dims;
279 for (int i = 0; i < NumInputDims; ++i) {
280 input_block_dims[i] = i < chip_dim ? desc.dimension(i) : i > chip_dim ? desc.dimension(i - 1) : 1;
281 }
282
283 ArgTensorBlockDesc arg_desc(srcCoeff(desc.offset()), input_block_dims);
284
285 // Try to reuse destination buffer for materializing argument block.
286 if (desc.HasDestinationBuffer()) {
287 DSizes<Index, NumInputDims> arg_destination_strides;
288 for (int i = 0; i < NumInputDims; ++i) {
289 arg_destination_strides[i] = i < chip_dim ? desc.destination().strides()[i]
290 : i > chip_dim ? desc.destination().strides()[i - 1]
291 : 0; // for dimensions of size `1` stride should never be used.
292 }
293
294 arg_desc.template AddDestinationBuffer<Layout>(desc.destination().template data<ScalarNoConst>(),
295 arg_destination_strides);
296 }
297
298 ArgTensorBlock arg_block = m_impl.block(arg_desc, scratch, root_of_expr_ast);
299 if (!arg_desc.HasDestinationBuffer()) desc.DropDestinationBuffer();
300
301 if (arg_block.data() != NULL) {
302 // Forward argument block buffer if possible.
303 return TensorBlock(arg_block.kind(), arg_block.data(), desc.dimensions());
304
305 } else {
306 // Assign argument block expression to a buffer.
307
308 // Prepare storage for the materialized chipping result.
309 const typename TensorBlock::Storage block_storage = TensorBlock::prepareStorage(desc, scratch);
310
311 typedef internal::TensorBlockAssignment<ScalarNoConst, NumInputDims, typename ArgTensorBlock::XprType, Index>
312 TensorBlockAssignment;
313
314 TensorBlockAssignment::Run(
315 TensorBlockAssignment::target(arg_desc.dimensions(), internal::strides<Layout>(arg_desc.dimensions()),
316 block_storage.data()),
317 arg_block.expr());
318
319 return block_storage.AsTensorMaterializedBlock();
320 }
321 }
322
323 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Storage::Type data() const {
324 typename Storage::Type result = constCast(m_impl.data());
325 if (isOuterChipping() && result) {
326 return result + m_inputOffset;
327 } else {
328 return NULL;
329 }
330 }
331
332 protected:
333 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const {
334 Index inputIndex;
335 if (isInnerChipping()) {
336 // m_stride is equal to 1, so let's avoid the integer division.
337 eigen_assert(m_stride == 1);
338 inputIndex = index * m_inputStride + m_inputOffset;
339 } else if (isOuterChipping()) {
340 // m_stride is always greater than index, so let's avoid the integer
341 // division.
342 eigen_assert(m_stride > index);
343 inputIndex = index + m_inputOffset;
344 } else {
345 const Index idx = index / m_stride;
346 inputIndex = idx * m_inputStride + m_inputOffset;
347 index -= idx * m_stride;
348 inputIndex += index;
349 }
350 return inputIndex;
351 }
352
353 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool isInnerChipping() const {
354 return IsInnerChipping || m_isEffectivelyInnerChipping;
355 }
356
357 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool isOuterChipping() const {
358 return IsOuterChipping || m_isEffectivelyOuterChipping;
359 }
360
361 Dimensions m_dimensions;
362 Index m_stride;
363 Index m_inputOffset;
364 Index m_inputStride;
365 TensorEvaluator<ArgType, Device> m_impl;
366 const internal::DimensionId<DimId> m_dim;
367 const Device EIGEN_DEVICE_REF m_device;
368
369 // If product of all dimensions after or before the chipped dimension is `1`,
370 // it is effectively the same as chipping innermost or outermost dimension.
371 bool m_isEffectivelyInnerChipping;
372 bool m_isEffectivelyOuterChipping;
373};
374
375// Eval as lvalue
376template <DenseIndex DimId, typename ArgType, typename Device>
377struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
378 : public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> {
379 typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base;
380 typedef TensorChippingOp<DimId, ArgType> XprType;
381 static constexpr int NumInputDims =
382 internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
383 static constexpr int NumDims = NumInputDims - 1;
384 typedef typename XprType::Index Index;
385 typedef DSizes<Index, NumDims> Dimensions;
386 typedef typename XprType::Scalar Scalar;
387 typedef typename XprType::CoeffReturnType CoeffReturnType;
388 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
389 static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
390
391 enum {
392 IsAligned = false,
393 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
394 BlockAccess = TensorEvaluator<ArgType, Device>::RawAccess,
395 Layout = TensorEvaluator<ArgType, Device>::Layout,
396 RawAccess = false
397 };
398
399 //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
400 typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
401 //===--------------------------------------------------------------------===//
402
403 EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {}
404
405 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) const {
406 return this->m_impl.coeffRef(this->srcCoeff(index));
407 }
408
409 template <int StoreMode>
410 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) const {
411 if (this->isInnerChipping()) {
412 // m_stride is equal to 1, so let's avoid the integer division.
413 eigen_assert(this->m_stride == 1);
414 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
415 internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
416 Index inputIndex = index * this->m_inputStride + this->m_inputOffset;
417 EIGEN_UNROLL_LOOP
418 for (int i = 0; i < PacketSize; ++i) {
419 this->m_impl.coeffRef(inputIndex) = values[i];
420 inputIndex += this->m_inputStride;
421 }
422 } else if (this->isOuterChipping()) {
423 // m_stride is always greater than index, so let's avoid the integer division.
424 eigen_assert(this->m_stride > index);
425 this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x);
426 } else {
427 const Index idx = index / this->m_stride;
428 const Index rem = index - idx * this->m_stride;
429 if (rem + PacketSize <= this->m_stride) {
430 const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem;
431 this->m_impl.template writePacket<StoreMode>(inputIndex, x);
432 } else {
433 // Cross stride boundary. Fallback to slow path.
434 EIGEN_ALIGN_MAX std::remove_const_t<CoeffReturnType> values[PacketSize];
435 internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
436 EIGEN_UNROLL_LOOP
437 for (int i = 0; i < PacketSize; ++i) {
438 this->coeffRef(index) = values[i];
439 ++index;
440 }
441 }
442 }
443 }
444
445 template <typename TensorBlock>
446 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(const TensorBlockDesc& desc, const TensorBlock& block) {
447 eigen_assert(this->m_impl.data() != NULL);
448
449 const Index chip_dim = this->m_dim.actualDim();
450
451 DSizes<Index, NumInputDims> input_block_dims;
452 for (int i = 0; i < NumInputDims; ++i) {
453 input_block_dims[i] = i < chip_dim ? desc.dimension(i) : i > chip_dim ? desc.dimension(i - 1) : 1;
454 }
455
456 typedef TensorReshapingOp<const DSizes<Index, NumInputDims>, const typename TensorBlock::XprType> TensorBlockExpr;
457
458 typedef internal::TensorBlockAssignment<Scalar, NumInputDims, TensorBlockExpr, Index> TensorBlockAssign;
459
460 TensorBlockAssign::Run(
461 TensorBlockAssign::target(input_block_dims, internal::strides<Layout>(this->m_impl.dimensions()),
462 this->m_impl.data(), this->srcCoeff(desc.offset())),
463 block.expr().reshape(input_block_dims));
464 }
465};
466
467} // end namespace Eigen
468
469#endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
The tensor base class.
Definition TensorForwardDeclarations.h:68
Definition TensorChipping.h:65
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
const int Dynamic
The tensor evaluator class.
Definition TensorEvaluator.h:30