Eigen-unsupported  5.0.1-dev+284dcc12
 
Loading...
Searching...
No Matches
TensorAssign.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
11#define EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
12
13// IWYU pragma: private
14#include "./InternalHeaderCheck.h"
15
16namespace Eigen {
17
18namespace internal {
19template <typename LhsXprType, typename RhsXprType>
20struct traits<TensorAssignOp<LhsXprType, RhsXprType> > {
21 typedef typename LhsXprType::Scalar Scalar;
22 typedef typename traits<LhsXprType>::StorageKind StorageKind;
23 typedef
24 typename promote_index_type<typename traits<LhsXprType>::Index, typename traits<RhsXprType>::Index>::type Index;
25 typedef typename LhsXprType::Nested LhsNested;
26 typedef typename RhsXprType::Nested RhsNested;
27 typedef std::remove_reference_t<LhsNested> LhsNested_;
28 typedef std::remove_reference_t<RhsNested> RhsNested_;
29 static constexpr std::size_t NumDimensions = internal::traits<LhsXprType>::NumDimensions;
30 static constexpr int Layout = internal::traits<LhsXprType>::Layout;
31 typedef typename traits<LhsXprType>::PointerType PointerType;
32
33 enum { Flags = 0 };
34};
35
36template <typename LhsXprType, typename RhsXprType>
37struct eval<TensorAssignOp<LhsXprType, RhsXprType>, Eigen::Dense> {
38 typedef const TensorAssignOp<LhsXprType, RhsXprType>& type;
39};
40
41template <typename LhsXprType, typename RhsXprType>
42struct nested<TensorAssignOp<LhsXprType, RhsXprType>, 1, typename eval<TensorAssignOp<LhsXprType, RhsXprType> >::type> {
43 typedef TensorAssignOp<LhsXprType, RhsXprType> type;
44};
45
46} // end namespace internal
47
54template <typename LhsXprType, typename RhsXprType>
55class TensorAssignOp : public TensorBase<TensorAssignOp<LhsXprType, RhsXprType> > {
56 public:
57 typedef typename Eigen::internal::traits<TensorAssignOp>::Scalar Scalar;
58 typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
59 typedef typename LhsXprType::CoeffReturnType CoeffReturnType;
60 typedef typename Eigen::internal::nested<TensorAssignOp>::type Nested;
61 typedef typename Eigen::internal::traits<TensorAssignOp>::StorageKind StorageKind;
62 typedef typename Eigen::internal::traits<TensorAssignOp>::Index Index;
63
64 static constexpr int NumDims = Eigen::internal::traits<TensorAssignOp>::NumDimensions;
65
66 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorAssignOp(LhsXprType& lhs, const RhsXprType& rhs)
67 : m_lhs_xpr(lhs), m_rhs_xpr(rhs) {}
68
70 EIGEN_DEVICE_FUNC internal::remove_all_t<typename LhsXprType::Nested>& lhsExpression() const {
71 return *((internal::remove_all_t<typename LhsXprType::Nested>*)&m_lhs_xpr);
72 }
73
74 EIGEN_DEVICE_FUNC const internal::remove_all_t<typename RhsXprType::Nested>& rhsExpression() const {
75 return m_rhs_xpr;
76 }
77
78 protected:
79 internal::remove_all_t<typename LhsXprType::Nested>& m_lhs_xpr;
80 const internal::remove_all_t<typename RhsXprType::Nested>& m_rhs_xpr;
81};
82
83template <typename LeftArgType, typename RightArgType, typename Device>
84struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device> {
85 typedef TensorAssignOp<LeftArgType, RightArgType> XprType;
86 typedef typename XprType::Index Index;
87 typedef typename XprType::Scalar Scalar;
88 typedef typename XprType::CoeffReturnType CoeffReturnType;
89 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
90 typedef typename TensorEvaluator<RightArgType, Device>::Dimensions Dimensions;
91 typedef StorageMemory<CoeffReturnType, Device> Storage;
92 typedef typename Storage::Type EvaluatorPointerType;
93
94 static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
95 static constexpr int NumDims = XprType::NumDims;
96 static constexpr int Layout = TensorEvaluator<LeftArgType, Device>::Layout;
97
98 enum {
99 IsAligned =
100 int(TensorEvaluator<LeftArgType, Device>::IsAligned) & int(TensorEvaluator<RightArgType, Device>::IsAligned),
101 PacketAccess = int(TensorEvaluator<LeftArgType, Device>::PacketAccess) &
102 int(TensorEvaluator<RightArgType, Device>::PacketAccess),
103 BlockAccess = int(TensorEvaluator<LeftArgType, Device>::BlockAccess) &
104 int(TensorEvaluator<RightArgType, Device>::BlockAccess),
105 PreferBlockAccess = int(TensorEvaluator<LeftArgType, Device>::PreferBlockAccess) |
106 int(TensorEvaluator<RightArgType, Device>::PreferBlockAccess),
107 RawAccess = TensorEvaluator<LeftArgType, Device>::RawAccess
108 };
109
110 //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
111 typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
112 typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
113
114 typedef typename TensorEvaluator<const RightArgType, Device>::TensorBlock RightTensorBlock;
115 //===--------------------------------------------------------------------===//
116
117 TensorEvaluator(const XprType& op, const Device& device)
118 : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device) {
119 EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) ==
120 static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)),
121 YOU_MADE_A_PROGRAMMING_MISTAKE);
122 }
123
124 EIGEN_DEVICE_FUNC const Dimensions& dimensions() const {
125 // The dimensions of the lhs and the rhs tensors should be equal to prevent
126 // overflows and ensure the result is fully initialized.
127 // TODO: use left impl instead if right impl dimensions are known at compile time.
128 return m_rightImpl.dimensions();
129 }
130
131 EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
132 eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
133 m_leftImpl.evalSubExprsIfNeeded(NULL);
134 // If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non
135 // null value), attempt to evaluate the rhs expression in place. Returns true iff in place
136 // evaluation isn't supported and the caller still needs to manually assign the values generated
137 // by the rhs to the lhs.
138 return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data());
139 }
140
141#ifdef EIGEN_USE_THREADS
142 template <typename EvalSubExprsCallback>
143 EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(EvaluatorPointerType, EvalSubExprsCallback done) {
144 m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done](bool) {
145 m_rightImpl.evalSubExprsIfNeededAsync(m_leftImpl.data(), [done](bool need_assign) { done(need_assign); });
146 });
147 }
148#endif // EIGEN_USE_THREADS
149
150 EIGEN_STRONG_INLINE void cleanup() {
151 m_leftImpl.cleanup();
152 m_rightImpl.cleanup();
153 }
154
155 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) const {
156 m_leftImpl.coeffRef(i) = m_rightImpl.coeff(i);
157 }
158 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) const {
159 const int LhsStoreMode = TensorEvaluator<LeftArgType, Device>::IsAligned ? Aligned : Unaligned;
160 const int RhsLoadMode = TensorEvaluator<RightArgType, Device>::IsAligned ? Aligned : Unaligned;
161 m_leftImpl.template writePacket<LhsStoreMode>(i, m_rightImpl.template packet<RhsLoadMode>(i));
162 }
163 EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const { return m_leftImpl.coeff(index); }
164 template <int LoadMode>
165 EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
166 return m_leftImpl.template packet<LoadMode>(index);
167 }
168
169 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
170 // We assume that evalPacket or evalScalar is called to perform the
171 // assignment and account for the cost of the write here, but reduce left
172 // cost by one load because we are using m_leftImpl.coeffRef.
173 TensorOpCost left = m_leftImpl.costPerCoeff(vectorized);
174 return m_rightImpl.costPerCoeff(vectorized) +
175 TensorOpCost(numext::maxi(0.0, left.bytes_loaded() - sizeof(CoeffReturnType)), left.bytes_stored(),
176 left.compute_cycles()) +
177 TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
178 }
179
180 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const {
181 return internal::TensorBlockResourceRequirements::merge(m_leftImpl.getResourceRequirements(),
182 m_rightImpl.getResourceRequirements());
183 }
184
185 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalBlock(TensorBlockDesc& desc, TensorBlockScratch& scratch) {
186 if (TensorEvaluator<LeftArgType, Device>::RawAccess && m_leftImpl.data() != NULL) {
187 // If destination has raw data access, we pass it as a potential
188 // destination for a block descriptor evaluation.
189 desc.template AddDestinationBuffer<Layout>(
190 /*dst_base=*/m_leftImpl.data() + desc.offset(),
191 /*dst_strides=*/internal::strides<Layout>(m_leftImpl.dimensions()));
192 }
193
194 RightTensorBlock block = m_rightImpl.block(desc, scratch, /*root_of_expr_ast=*/true);
195 // If block was evaluated into a destination, there is no need to do assignment.
196 if (block.kind() != internal::TensorBlockKind::kMaterializedInOutput) {
197 m_leftImpl.writeBlock(desc, block);
198 }
199 block.cleanup();
200 }
201
202 EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_leftImpl.data(); }
203
204 private:
205 TensorEvaluator<LeftArgType, Device> m_leftImpl;
206 TensorEvaluator<RightArgType, Device> m_rightImpl;
207};
208
209} // namespace Eigen
210
211#endif // EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
Definition TensorAssign.h:55
internal::remove_all_t< typename LhsXprType::Nested > & lhsExpression() const
Definition TensorAssign.h:70
The tensor base class.
Definition TensorForwardDeclarations.h:68
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:30