Eigen-unsupported  5.0.1-dev+284dcc12
 
Loading...
Searching...
No Matches
PolynomialUtils.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_POLYNOMIAL_UTILS_H
11#define EIGEN_POLYNOMIAL_UTILS_H
12
13// IWYU pragma: private
14#include "./InternalHeaderCheck.h"
15
16namespace Eigen {
17
29template <typename Polynomials, typename T>
30inline T poly_eval_horner(const Polynomials& poly, const T& x) {
31 T val = poly[poly.size() - 1];
32 for (DenseIndex i = poly.size() - 2; i >= 0; --i) {
33 val = val * x + poly[i];
34 }
35 return val;
36}
37
46template <typename Polynomials, typename T>
47inline T poly_eval(const Polynomials& poly, const T& x) {
48 typedef typename NumTraits<T>::Real Real;
49
50 if (numext::abs2(x) <= Real(1)) {
51 return poly_eval_horner(poly, x);
52 } else {
53 T val = poly[0];
54 T inv_x = T(1) / x;
55 for (DenseIndex i = 1; i < poly.size(); ++i) {
56 val = val * inv_x + poly[i];
57 }
58
59 return numext::pow(x, (T)(poly.size() - 1)) * val;
60 }
61}
62
73template <typename Polynomial>
74inline typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound(const Polynomial& poly) {
75 using std::abs;
76 typedef typename Polynomial::Scalar Scalar;
77 typedef typename NumTraits<Scalar>::Real Real;
78
79 eigen_assert(Scalar(0) != poly[poly.size() - 1]);
80 const Scalar inv_leading_coeff = Scalar(1) / poly[poly.size() - 1];
81 Real cb(0);
82
83 for (DenseIndex i = 0; i < poly.size() - 1; ++i) {
84 cb += abs(poly[i] * inv_leading_coeff);
85 }
86 return cb + Real(1);
87}
88
95template <typename Polynomial>
96inline typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound(const Polynomial& poly) {
97 using std::abs;
98 typedef typename Polynomial::Scalar Scalar;
99 typedef typename NumTraits<Scalar>::Real Real;
100
101 DenseIndex i = 0;
102 while (i < poly.size() - 1 && Scalar(0) == poly(i)) {
103 ++i;
104 }
105 if (poly.size() - 1 == i) {
106 return Real(1);
107 }
108
109 const Scalar inv_min_coeff = Scalar(1) / poly[i];
110 Real cb(1);
111 for (DenseIndex j = i + 1; j < poly.size(); ++j) {
112 cb += abs(poly[j] * inv_min_coeff);
113 }
114 return Real(1) / cb;
115}
116
127template <typename RootVector, typename Polynomial>
128void roots_to_monicPolynomial(const RootVector& rv, Polynomial& poly) {
129 typedef typename Polynomial::Scalar Scalar;
130
131 poly.setZero(rv.size() + 1);
132 poly[0] = -rv[0];
133 poly[1] = Scalar(1);
134 for (DenseIndex i = 1; i < rv.size(); ++i) {
135 for (DenseIndex j = i + 1; j > 0; --j) {
136 poly[j] = poly[j - 1] - rv[i] * poly[j];
137 }
138 poly[0] = -rv[i] * poly[0];
139 }
140}
141
142} // end namespace Eigen
143
144#endif // EIGEN_POLYNOMIAL_UTILS_H
NumTraits< typenamePolynomial::Scalar >::Real cauchy_max_bound(const Polynomial &poly)
Definition PolynomialUtils.h:74
T poly_eval_horner(const Polynomials &poly, const T &x)
Definition PolynomialUtils.h:30
NumTraits< typenamePolynomial::Scalar >::Real cauchy_min_bound(const Polynomial &poly)
Definition PolynomialUtils.h:96
T poly_eval(const Polynomials &poly, const T &x)
Definition PolynomialUtils.h:47
void roots_to_monicPolynomial(const RootVector &rv, Polynomial &poly)
Definition PolynomialUtils.h:128
Namespace containing all symbols from the Eigen library.
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs_op< typename Derived::Scalar >, const Derived > abs(const Eigen::ArrayBase< Derived > &x)