Eigen-unsupported  5.0.1-dev+284dcc12
 
Loading...
Searching...
No Matches
MINRES.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
5// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6// Copyright (C) 2018 David Hyde <dabh@stanford.edu>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_MINRES_H
13#define EIGEN_MINRES_H
14
15// IWYU pragma: private
16#include "./InternalHeaderCheck.h"
17
18namespace Eigen {
19
20namespace internal {
21
31template <typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
32EIGEN_DONT_INLINE void minres(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond,
33 Index& iters, typename Dest::RealScalar& tol_error) {
34 using std::sqrt;
35 typedef typename Dest::RealScalar RealScalar;
36 typedef typename Dest::Scalar Scalar;
37 typedef Matrix<Scalar, Dynamic, 1> VectorType;
38
39 // Check for zero rhs
40 const RealScalar rhsNorm2(rhs.squaredNorm());
41 if (rhsNorm2 == 0) {
42 x.setZero();
43 iters = 0;
44 tol_error = 0;
45 return;
46 }
47
48 // initialize
49 const Index maxIters(iters); // initialize maxIters to iters
50 const Index N(mat.cols()); // the size of the matrix
51 const RealScalar threshold2(tol_error * tol_error * rhsNorm2); // convergence threshold (compared to residualNorm2)
52
53 // Initialize preconditioned Lanczos
54 VectorType v_old(N); // will be initialized inside loop
55 VectorType v(VectorType::Zero(N)); // initialize v
56 VectorType v_new(rhs - mat * x); // initialize v_new
57 RealScalar residualNorm2(v_new.squaredNorm());
58 VectorType w(N); // will be initialized inside loop
59 VectorType w_new(precond.solve(v_new)); // initialize w_new
60 // RealScalar beta; // will be initialized inside loop
61 RealScalar beta_new2(v_new.dot(w_new));
62 eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
63 RealScalar beta_new(sqrt(beta_new2));
64 const RealScalar beta_one(beta_new);
65 // Initialize other variables
66 RealScalar c(1.0); // the cosine of the Givens rotation
67 RealScalar c_old(1.0);
68 RealScalar s(0.0); // the sine of the Givens rotation
69 RealScalar s_old(0.0); // the sine of the Givens rotation
70 VectorType p_oold(N); // will be initialized in loop
71 VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
72 VectorType p(p_old); // initialize p=0
73 RealScalar eta(1.0);
74
75 iters = 0; // reset iters
76 while (iters < maxIters) {
77 // Preconditioned Lanczos
78 /* Note that there are 4 variants on the Lanczos algorithm. These are
79 * described in Paige, C. C. (1972). Computational variants of
80 * the Lanczos method for the eigenproblem. IMA Journal of Applied
81 * Mathematics, 10(3), 373-381. The current implementation corresponds
82 * to the case A(2,7) in the paper. It also corresponds to
83 * algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
84 * Systems, 2003 p.173. For the preconditioned version see
85 * A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
86 */
87 const RealScalar beta(beta_new);
88 v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
89 v_new /= beta_new; // overwrite v_new for next iteration
90 w_new /= beta_new; // overwrite w_new for next iteration
91 v = v_new; // update
92 w = w_new; // update
93 v_new.noalias() = mat * w - beta * v_old; // compute v_new
94 const RealScalar alpha = v_new.dot(w);
95 v_new -= alpha * v; // overwrite v_new
96 w_new = precond.solve(v_new); // overwrite w_new
97 beta_new2 = v_new.dot(w_new); // compute beta_new
98 eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
99 beta_new = sqrt(beta_new2); // compute beta_new
100
101 // Givens rotation
102 const RealScalar r2 = s * alpha + c * c_old * beta; // s, s_old, c and c_old are still from previous iteration
103 const RealScalar r3 = s_old * beta; // s, s_old, c and c_old are still from previous iteration
104 const RealScalar r1_hat = c * alpha - c_old * s * beta;
105 const RealScalar r1 = sqrt(std::pow(r1_hat, 2) + std::pow(beta_new, 2));
106 c_old = c; // store for next iteration
107 s_old = s; // store for next iteration
108 c = r1_hat / r1; // new cosine
109 s = beta_new / r1; // new sine
110
111 // Update solution
112 p_oold = p_old;
113 p_old = p;
114 p.noalias() = (w - r2 * p_old - r3 * p_oold) / r1; // IS NOALIAS REQUIRED?
115 x += beta_one * c * eta * p;
116
117 /* Update the squared residual. Note that this is the estimated residual.
118 The real residual |Ax-b|^2 may be slightly larger */
119 residualNorm2 *= s * s;
120
121 if (residualNorm2 < threshold2) {
122 break;
123 }
124
125 eta = -s * eta; // update eta
126 iters++; // increment iteration number (for output purposes)
127 }
128
129 /* Compute error. Note that this is the estimated error. The real
130 error |Ax-b|/|b| may be slightly larger */
131 tol_error = std::sqrt(residualNorm2 / rhsNorm2);
132}
133
134} // namespace internal
135
136template <typename MatrixType_, int UpLo_ = Lower, typename Preconditioner_ = IdentityPreconditioner>
137class MINRES;
138
139namespace internal {
140
141template <typename MatrixType_, int UpLo_, typename Preconditioner_>
142struct traits<MINRES<MatrixType_, UpLo_, Preconditioner_> > {
143 typedef MatrixType_ MatrixType;
144 typedef Preconditioner_ Preconditioner;
145};
146
147} // namespace internal
148
187template <typename MatrixType_, int UpLo_, typename Preconditioner_>
188class MINRES : public IterativeSolverBase<MINRES<MatrixType_, UpLo_, Preconditioner_> > {
189 typedef IterativeSolverBase<MINRES> Base;
190 using Base::m_error;
191 using Base::m_info;
192 using Base::m_isInitialized;
193 using Base::m_iterations;
194 using Base::matrix;
195
196 public:
197 using Base::_solve_impl;
198 typedef MatrixType_ MatrixType;
199 typedef typename MatrixType::Scalar Scalar;
200 typedef typename MatrixType::RealScalar RealScalar;
201 typedef Preconditioner_ Preconditioner;
202
203 enum { UpLo = UpLo_ };
204
205 public:
207 MINRES() : Base() {}
208
219 template <typename MatrixDerived>
220 explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
221
224
226 template <typename Rhs, typename Dest>
227 void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const {
228 typedef typename Base::MatrixWrapper MatrixWrapper;
229 typedef typename Base::ActualMatrixType ActualMatrixType;
230 enum {
231 TransposeInput = (!MatrixWrapper::MatrixFree) && (UpLo == (Lower | Upper)) && (!MatrixType::IsRowMajor) &&
233 };
234 typedef std::conditional_t<TransposeInput, Transpose<const ActualMatrixType>, ActualMatrixType const&>
235 RowMajorWrapper;
236 EIGEN_STATIC_ASSERT(internal::check_implication(MatrixWrapper::MatrixFree, UpLo == (Lower | Upper)),
237 MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
238 typedef std::conditional_t<UpLo == (Lower | Upper), RowMajorWrapper,
239 typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type>
240 SelfAdjointWrapper;
241
242 m_iterations = Base::maxIterations();
243 m_error = Base::m_tolerance;
244 RowMajorWrapper row_mat(matrix());
245 internal::minres(SelfAdjointWrapper(row_mat), b, x, Base::m_preconditioner, m_iterations, m_error);
246 m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
247 }
248
249 protected:
250};
251
252} // end namespace Eigen
253
254#endif // EIGEN_MINRES_H
A minimal residual solver for sparse symmetric problems.
Definition MINRES.h:188
MINRES()
Definition MINRES.h:207
MINRES(const EigenBase< MatrixDerived > &A)
Definition MINRES.h:220
~MINRES()
Definition MINRES.h:223
Namespace containing all symbols from the Eigen library.
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived > sqrt(const Eigen::ArrayBase< Derived > &x)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index