Eigen-unsupported  5.0.1-dev+284dcc12
 
Loading...
Searching...
No Matches
LMonestep.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
5//
6// This code initially comes from MINPACK whose original authors are:
7// Copyright Jorge More - Argonne National Laboratory
8// Copyright Burt Garbow - Argonne National Laboratory
9// Copyright Ken Hillstrom - Argonne National Laboratory
10//
11// This Source Code Form is subject to the terms of the Minpack license
12// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
13
14#ifndef EIGEN_LMONESTEP_H
15#define EIGEN_LMONESTEP_H
16
17// IWYU pragma: private
18#include "./InternalHeaderCheck.h"
19
20namespace Eigen {
21
22template <typename FunctorType>
23LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x) {
24 using std::abs;
25 using std::sqrt;
26 RealScalar temp, temp1, temp2;
27 RealScalar ratio;
28 RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
29 eigen_assert(x.size() == n); // check the caller is not cheating us
30
31 temp = 0.0;
32 xnorm = 0.0;
33 /* calculate the jacobian matrix. */
34 Index df_ret = m_functor.df(x, m_fjac);
35 if (df_ret < 0) return LevenbergMarquardtSpace::UserAsked;
36 if (df_ret > 0)
37 // numerical diff, we evaluated the function df_ret times
38 m_nfev += df_ret;
39 else
40 m_njev++;
41
42 /* compute the qr factorization of the jacobian. */
43 for (int j = 0; j < x.size(); ++j) m_wa2(j) = m_fjac.col(j).blueNorm();
44 QRSolver qrfac(m_fjac);
45 if (qrfac.info() != Success) {
46 m_info = NumericalIssue;
47 return LevenbergMarquardtSpace::ImproperInputParameters;
48 }
49 // Make a copy of the first factor with the associated permutation
50 m_rfactor = qrfac.matrixR();
51 m_permutation = (qrfac.colsPermutation());
52
53 /* on the first iteration and if external scaling is not used, scale according */
54 /* to the norms of the columns of the initial jacobian. */
55 if (m_iter == 1) {
56 if (!m_useExternalScaling)
57 for (Index j = 0; j < n; ++j) m_diag[j] = (m_wa2[j] == 0.) ? 1. : m_wa2[j];
58
59 /* on the first iteration, calculate the norm of the scaled x */
60 /* and initialize the step bound m_delta. */
61 xnorm = m_diag.cwiseProduct(x).stableNorm();
62 m_delta = m_factor * xnorm;
63 if (m_delta == 0.) m_delta = m_factor;
64 }
65
66 /* form (q transpose)*m_fvec and store the first n components in */
67 /* m_qtf. */
68 m_wa4 = m_fvec;
69 m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
70 m_qtf = m_wa4.head(n);
71
72 /* compute the norm of the scaled gradient. */
73 m_gnorm = 0.;
74 if (m_fnorm != 0.)
75 for (Index j = 0; j < n; ++j)
76 if (m_wa2[m_permutation.indices()[j]] != 0.)
77 m_gnorm = (std::max)(m_gnorm, abs(m_rfactor.col(j).head(j + 1).dot(m_qtf.head(j + 1) / m_fnorm) /
78 m_wa2[m_permutation.indices()[j]]));
79
80 /* test for convergence of the gradient norm. */
81 if (m_gnorm <= m_gtol) {
82 m_info = Success;
83 return LevenbergMarquardtSpace::CosinusTooSmall;
84 }
85
86 /* rescale if necessary. */
87 if (!m_useExternalScaling) m_diag = m_diag.cwiseMax(m_wa2);
88
89 do {
90 /* determine the levenberg-marquardt parameter. */
91 internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
92
93 /* store the direction p and x + p. calculate the norm of p. */
94 m_wa1 = -m_wa1;
95 m_wa2 = x + m_wa1;
96 pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
97
98 /* on the first iteration, adjust the initial step bound. */
99 if (m_iter == 1) m_delta = (std::min)(m_delta, pnorm);
100
101 /* evaluate the function at x + p and calculate its norm. */
102 if (m_functor(m_wa2, m_wa4) < 0) return LevenbergMarquardtSpace::UserAsked;
103 ++m_nfev;
104 fnorm1 = m_wa4.stableNorm();
105
106 /* compute the scaled actual reduction. */
107 actred = -1.;
108 if (Scalar(.1) * fnorm1 < m_fnorm) actred = 1. - numext::abs2(fnorm1 / m_fnorm);
109
110 /* compute the scaled predicted reduction and */
111 /* the scaled directional derivative. */
112 m_wa3 = m_rfactor.template triangularView<Upper>() * (m_permutation.inverse() * m_wa1);
113 temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm);
114 temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm);
115 prered = temp1 + temp2 / Scalar(.5);
116 dirder = -(temp1 + temp2);
117
118 /* compute the ratio of the actual to the predicted */
119 /* reduction. */
120 ratio = 0.;
121 if (prered != 0.) ratio = actred / prered;
122
123 /* update the step bound. */
124 if (ratio <= Scalar(.25)) {
125 if (actred >= 0.) temp = RealScalar(.5);
126 if (actred < 0.) temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
127 if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1)) temp = Scalar(.1);
128 /* Computing MIN */
129 m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
130 m_par /= temp;
131 } else if (!(m_par != 0. && ratio < RealScalar(.75))) {
132 m_delta = pnorm / RealScalar(.5);
133 m_par = RealScalar(.5) * m_par;
134 }
135
136 /* test for successful iteration. */
137 if (ratio >= RealScalar(1e-4)) {
138 /* successful iteration. update x, m_fvec, and their norms. */
139 x = m_wa2;
140 m_wa2 = m_diag.cwiseProduct(x);
141 m_fvec = m_wa4;
142 xnorm = m_wa2.stableNorm();
143 m_fnorm = fnorm1;
144 ++m_iter;
145 }
146
147 /* tests for convergence. */
148 if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm) {
149 m_info = Success;
150 return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
151 }
152 if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.) {
153 m_info = Success;
154 return LevenbergMarquardtSpace::RelativeReductionTooSmall;
155 }
156 if (m_delta <= m_xtol * xnorm) {
157 m_info = Success;
158 return LevenbergMarquardtSpace::RelativeErrorTooSmall;
159 }
160
161 /* tests for termination and stringent tolerances. */
162 if (m_nfev >= m_maxfev) {
163 m_info = NoConvergence;
164 return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
165 }
166 if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() &&
167 Scalar(.5) * ratio <= 1.) {
168 m_info = Success;
169 return LevenbergMarquardtSpace::FtolTooSmall;
170 }
171 if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm) {
172 m_info = Success;
173 return LevenbergMarquardtSpace::XtolTooSmall;
174 }
175 if (m_gnorm <= NumTraits<Scalar>::epsilon()) {
176 m_info = Success;
177 return LevenbergMarquardtSpace::GtolTooSmall;
178 }
179
180 } while (ratio < Scalar(1e-4));
181
182 return LevenbergMarquardtSpace::Running;
183}
184
185} // end namespace Eigen
186
187#endif // EIGEN_LMONESTEP_H
NumericalIssue
Namespace containing all symbols from the Eigen library.
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived > sqrt(const Eigen::ArrayBase< Derived > &x)
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs_op< typename Derived::Scalar >, const Derived > abs(const Eigen::ArrayBase< Derived > &x)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index