Eigen-unsupported  5.0.1-dev+284dcc12
 
Loading...
Searching...
No Matches
KdBVH.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef KDBVH_H_INCLUDED
11#define KDBVH_H_INCLUDED
12
13// IWYU pragma: private
14#include "./InternalHeaderCheck.h"
15
16namespace Eigen {
17
18namespace internal {
19
20// internal pair class for the BVH--used instead of std::pair because of alignment
21template <typename Scalar, int Dim>
22struct vector_int_pair {
23 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Dim)
24 typedef Matrix<Scalar, Dim, 1> VectorType;
25
26 vector_int_pair(const VectorType &v, int i) : first(v), second(i) {}
27
28 VectorType first;
29 int second;
30};
31
32// these templates help the tree initializer get the bounding boxes either from a provided
33// iterator range or using bounding_box in a unified way
34template <typename ObjectList, typename VolumeList, typename BoxIter>
35struct get_boxes_helper {
36 void operator()(const ObjectList &objects, BoxIter boxBegin, BoxIter boxEnd, VolumeList &outBoxes) {
37 outBoxes.insert(outBoxes.end(), boxBegin, boxEnd);
38 eigen_assert(outBoxes.size() == objects.size());
39 EIGEN_ONLY_USED_FOR_DEBUG(objects);
40 }
41};
42
43template <typename ObjectList, typename VolumeList>
44struct get_boxes_helper<ObjectList, VolumeList, int> {
45 void operator()(const ObjectList &objects, int, int, VolumeList &outBoxes) {
46 outBoxes.reserve(objects.size());
47 for (int i = 0; i < (int)objects.size(); ++i) outBoxes.push_back(bounding_box(objects[i]));
48 }
49};
50
51} // end namespace internal
52
67template <typename Scalar_, int Dim_, typename Object_>
68class KdBVH {
69 public:
70 enum { Dim = Dim_ };
71 typedef Object_ Object;
72 typedef std::vector<Object, aligned_allocator<Object> > ObjectList;
73 typedef Scalar_ Scalar;
74 typedef AlignedBox<Scalar, Dim> Volume;
75 typedef std::vector<Volume, aligned_allocator<Volume> > VolumeList;
76 typedef int Index;
77 typedef const int *VolumeIterator; // the iterators are just pointers into the tree's vectors
78 typedef const Object *ObjectIterator;
79
80 KdBVH() {}
81
84 template <typename Iter>
85 KdBVH(Iter begin, Iter end) {
86 init(begin, end, 0, 0);
87 } // int is recognized by init as not being an iterator type
88
91 template <typename OIter, typename BIter>
92 KdBVH(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) {
93 init(begin, end, boxBegin, boxEnd);
94 }
95
98 template <typename Iter>
99 void init(Iter begin, Iter end) {
100 init(begin, end, 0, 0);
101 }
102
105 template <typename OIter, typename BIter>
106 void init(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) {
107 objects.clear();
108 boxes.clear();
109 children.clear();
110
111 objects.insert(objects.end(), begin, end);
112 int n = static_cast<int>(objects.size());
113
114 if (n < 2) return; // if we have at most one object, we don't need any internal nodes
115
116 VolumeList objBoxes;
117 VIPairList objCenters;
118
119 // compute the bounding boxes depending on BIter type
120 internal::get_boxes_helper<ObjectList, VolumeList, BIter>()(objects, boxBegin, boxEnd, objBoxes);
121
122 objCenters.reserve(n);
123 boxes.reserve(n - 1);
124 children.reserve(2 * n - 2);
125
126 for (int i = 0; i < n; ++i) objCenters.push_back(VIPair(objBoxes[i].center(), i));
127
128 build(objCenters, 0, n, objBoxes, 0); // the recursive part of the algorithm
129
130 ObjectList tmp(n);
131 tmp.swap(objects);
132 for (int i = 0; i < n; ++i) objects[i] = tmp[objCenters[i].second];
133 }
134
136 inline Index getRootIndex() const { return (int)boxes.size() - 1; }
137
140 EIGEN_STRONG_INLINE void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd,
141 ObjectIterator &outOBegin, ObjectIterator &outOEnd)
142 const { // inlining this function should open lots of optimization opportunities to the compiler
143 if (index < 0) {
144 outVBegin = outVEnd;
145 if (!objects.empty()) outOBegin = &(objects[0]);
146 outOEnd = outOBegin + objects.size(); // output all objects--necessary when the tree has only one object
147 return;
148 }
149
150 int numBoxes = static_cast<int>(boxes.size());
151
152 int idx = index * 2;
153 if (children[idx + 1] < numBoxes) { // second index is always bigger
154 outVBegin = &(children[idx]);
155 outVEnd = outVBegin + 2;
156 outOBegin = outOEnd;
157 } else if (children[idx] >= numBoxes) { // if both children are objects
158 outVBegin = outVEnd;
159 outOBegin = &(objects[children[idx] - numBoxes]);
160 outOEnd = outOBegin + 2;
161 } else { // if the first child is a volume and the second is an object
162 outVBegin = &(children[idx]);
163 outVEnd = outVBegin + 1;
164 outOBegin = &(objects[children[idx + 1] - numBoxes]);
165 outOEnd = outOBegin + 1;
166 }
167 }
168
170 inline const Volume &getVolume(Index index) const { return boxes[index]; }
171
172 private:
173 typedef internal::vector_int_pair<Scalar, Dim> VIPair;
174 typedef std::vector<VIPair, aligned_allocator<VIPair> > VIPairList;
175 typedef Matrix<Scalar, Dim, 1> VectorType;
176 struct VectorComparator // compares vectors, or more specifically, VIPairs along a particular dimension
177 {
178 VectorComparator(int inDim) : dim(inDim) {}
179 inline bool operator()(const VIPair &v1, const VIPair &v2) const { return v1.first[dim] < v2.first[dim]; }
180 int dim;
181 };
182
183 // Build the part of the tree between objects[from] and objects[to] (not including objects[to]).
184 // This routine partitions the objCenters in [from, to) along the dimension dim, recursively constructs
185 // the two halves, and adds their parent node. TODO: a cache-friendlier layout
186 void build(VIPairList &objCenters, int from, int to, const VolumeList &objBoxes, int dim) {
187 eigen_assert(to - from > 1);
188 if (to - from == 2) {
189 boxes.push_back(objBoxes[objCenters[from].second].merged(objBoxes[objCenters[from + 1].second]));
190 children.push_back(from + (int)objects.size() - 1); // there are objects.size() - 1 tree nodes
191 children.push_back(from + (int)objects.size());
192 } else if (to - from == 3) {
193 int mid = from + 2;
194 std::nth_element(objCenters.begin() + from, objCenters.begin() + mid, objCenters.begin() + to,
195 VectorComparator(dim)); // partition
196 build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
197 int idx1 = (int)boxes.size() - 1;
198 boxes.push_back(boxes[idx1].merged(objBoxes[objCenters[mid].second]));
199 children.push_back(idx1);
200 children.push_back(mid + (int)objects.size() - 1);
201 } else {
202 int mid = from + (to - from) / 2;
203 nth_element(objCenters.begin() + from, objCenters.begin() + mid, objCenters.begin() + to,
204 VectorComparator(dim)); // partition
205 build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
206 int idx1 = (int)boxes.size() - 1;
207 build(objCenters, mid, to, objBoxes, (dim + 1) % Dim);
208 int idx2 = (int)boxes.size() - 1;
209 boxes.push_back(boxes[idx1].merged(boxes[idx2]));
210 children.push_back(idx1);
211 children.push_back(idx2);
212 }
213 }
214
215 std::vector<int> children; // children of x are children[2x] and children[2x+1], indices bigger than boxes.size()
216 // index into objects.
217 VolumeList boxes;
218 ObjectList objects;
219};
220
221} // end namespace Eigen
222
223#endif // KDBVH_H_INCLUDED
void init(Iter begin, Iter end)
Definition KdBVH.h:99
const Volume & getVolume(Index index) const
Definition KdBVH.h:170
KdBVH(OIter begin, OIter end, BIter boxBegin, BIter boxEnd)
Definition KdBVH.h:92
void init(OIter begin, OIter end, BIter boxBegin, BIter boxEnd)
Definition KdBVH.h:106
KdBVH(Iter begin, Iter end)
Definition KdBVH.h:85
void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd, ObjectIterator &outOBegin, ObjectIterator &outOEnd) const
Definition KdBVH.h:140
Index getRootIndex() const
Definition KdBVH.h:136
Namespace containing all symbols from the Eigen library.