20 inline explicit DynamicSGroup() : m_numIndices(1), m_elements(), m_generators(), m_globalFlags(0) {
21 m_elements.push_back(ge(Generator(0, 0, 0)));
23 inline DynamicSGroup(
const DynamicSGroup& o)
24 : m_numIndices(o.m_numIndices),
25 m_elements(o.m_elements),
26 m_generators(o.m_generators),
27 m_globalFlags(o.m_globalFlags) {}
28 inline DynamicSGroup(DynamicSGroup&& o)
29 : m_numIndices(o.m_numIndices), m_elements(), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) {
30 std::swap(m_elements, o.m_elements);
32 inline DynamicSGroup& operator=(
const DynamicSGroup& o) {
33 m_numIndices = o.m_numIndices;
34 m_elements = o.m_elements;
35 m_generators = o.m_generators;
36 m_globalFlags = o.m_globalFlags;
39 inline DynamicSGroup& operator=(DynamicSGroup&& o) {
40 m_numIndices = o.m_numIndices;
41 std::swap(m_elements, o.m_elements);
42 m_generators = o.m_generators;
43 m_globalFlags = o.m_globalFlags;
47 void add(
int one,
int two,
int flags = 0);
49 template <
typename Gen_>
50 inline void add(Gen_) {
51 add(Gen_::One, Gen_::Two, Gen_::Flags);
53 inline void addSymmetry(
int one,
int two) { add(one, two, 0); }
54 inline void addAntiSymmetry(
int one,
int two) { add(one, two, NegationFlag); }
55 inline void addHermiticity(
int one,
int two) { add(one, two, ConjugationFlag); }
56 inline void addAntiHermiticity(
int one,
int two) { add(one, two, NegationFlag | ConjugationFlag); }
58 template <
typename Op,
typename RV,
typename Index, std::size_t N,
typename... Args>
59 inline RV apply(
const std::array<Index, N>& idx, RV initial, Args&&... args)
const {
60 eigen_assert(N >= m_numIndices &&
61 "Can only apply symmetry group to objects that have at least the required amount of indices.");
62 for (std::size_t i = 0; i < size(); i++)
63 initial = Op::run(h_permute(i, idx,
typename internal::gen_numeric_list<int, N>::type()), m_elements[i].flags,
64 initial, std::forward<Args>(args)...);
68 template <
typename Op,
typename RV,
typename Index,
typename... Args>
69 inline RV apply(
const std::vector<Index>& idx, RV initial, Args&&... args)
const {
70 eigen_assert(idx.size() >= m_numIndices &&
71 "Can only apply symmetry group to objects that have at least the required amount of indices.");
72 for (std::size_t i = 0; i < size(); i++)
73 initial = Op::run(h_permute(i, idx), m_elements[i].flags, initial, std::forward<Args>(args)...);
77 inline int globalFlags()
const {
return m_globalFlags; }
78 inline std::size_t size()
const {
return m_elements.size(); }
80 template <
typename Tensor_,
typename... IndexTypes>
81 inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor,
82 typename Tensor_::Index firstIndex,
83 IndexTypes... otherIndices)
const {
84 static_assert(
sizeof...(otherIndices) + 1 == Tensor_::NumIndices,
85 "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
86 return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}});
89 template <
typename Tensor_>
90 inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(
91 Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>
const& indices)
const {
92 return internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup>(tensor, *
this, indices);
97 std::vector<int> representation;
100 for (std::size_t i = 0; i < representation.size(); i++)
101 if (i != (
size_t)representation[i])
return false;
109 constexpr Generator(
int one_,
int two_,
int flags_) : one(one_), two(two_), flags(flags_) {}
112 std::size_t m_numIndices;
113 std::vector<GroupElement> m_elements;
114 std::vector<Generator> m_generators;
117 template <
typename Index, std::size_t N,
int... n>
118 inline std::array<Index, N> h_permute(std::size_t which,
const std::array<Index, N>& idx,
119 internal::numeric_list<int, n...>)
const {
120 return std::array<Index, N>{{idx[n >= m_numIndices ? n : m_elements[which].representation[n]]...}};
123 template <
typename Index>
124 inline std::vector<Index> h_permute(std::size_t which, std::vector<Index> idx)
const {
125 std::vector<Index> result;
126 result.reserve(idx.size());
127 for (
auto k : m_elements[which].representation) result.push_back(idx[k]);
128 for (std::size_t i = m_numIndices; i < idx.size(); i++) result.push_back(idx[i]);
132 inline GroupElement ge(Generator
const& g)
const {
134 result.representation.reserve(m_numIndices);
135 result.flags = g.flags;
136 for (std::size_t k = 0; k < m_numIndices; k++) {
137 if (k == (std::size_t)g.one)
138 result.representation.push_back(g.two);
139 else if (k == (std::size_t)g.two)
140 result.representation.push_back(g.one);
142 result.representation.push_back(
int(k));
147 GroupElement mul(GroupElement, GroupElement)
const;
148 inline GroupElement mul(Generator g1, GroupElement g2)
const {
return mul(ge(g1), g2); }
150 inline GroupElement mul(GroupElement g1, Generator g2)
const {
return mul(g1, ge(g2)); }
152 inline GroupElement mul(Generator g1, Generator g2)
const {
return mul(ge(g1), ge(g2)); }
154 inline int findElement(GroupElement e)
const {
155 for (
auto ee : m_elements) {
156 if (ee.representation == e.representation)
return ee.flags ^ e.flags;
161 void updateGlobalFlags(
int flagDiffOfSameGenerator);