Eigen-unsupported  5.0.1-dev+284dcc12
 
Loading...
Searching...
No Matches
DGMRES.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_DGMRES_H
11#define EIGEN_DGMRES_H
12
13#include "../../../../Eigen/Eigenvalues"
14
15// IWYU pragma: private
16#include "./InternalHeaderCheck.h"
17
18namespace Eigen {
19
20template <typename MatrixType_, typename Preconditioner_ = DiagonalPreconditioner<typename MatrixType_::Scalar> >
21class DGMRES;
22
23namespace internal {
24
25template <typename MatrixType_, typename Preconditioner_>
26struct traits<DGMRES<MatrixType_, Preconditioner_> > {
27 typedef MatrixType_ MatrixType;
28 typedef Preconditioner_ Preconditioner;
29};
30
39template <typename VectorType, typename IndexType>
40void sortWithPermutation(VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut) {
41 eigen_assert(vec.size() == perm.size());
42 bool flag;
43 for (Index k = 0; k < ncut; k++) {
44 flag = false;
45 for (Index j = 0; j < vec.size() - 1; j++) {
46 if (vec(perm(j)) < vec(perm(j + 1))) {
47 std::swap(perm(j), perm(j + 1));
48 flag = true;
49 }
50 if (!flag) break; // The vector is in sorted order
51 }
52 }
53}
54
55} // namespace internal
97template <typename MatrixType_, typename Preconditioner_>
98class DGMRES : public IterativeSolverBase<DGMRES<MatrixType_, Preconditioner_> > {
99 typedef IterativeSolverBase<DGMRES> Base;
100 using Base::m_error;
101 using Base::m_info;
102 using Base::m_isInitialized;
103 using Base::m_iterations;
104 using Base::m_tolerance;
105 using Base::matrix;
106
107 public:
108 using Base::_solve_impl;
109 using Base::_solve_with_guess_impl;
110 typedef MatrixType_ MatrixType;
111 typedef typename MatrixType::Scalar Scalar;
112 typedef typename MatrixType::StorageIndex StorageIndex;
113 typedef typename MatrixType::RealScalar RealScalar;
114 typedef internal::make_complex_t<Scalar> ComplexScalar;
115 typedef Preconditioner_ Preconditioner;
116 typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix;
117 typedef Matrix<RealScalar, Dynamic, Dynamic> DenseRealMatrix;
118 typedef Matrix<Scalar, Dynamic, 1> DenseVector;
119 typedef Matrix<RealScalar, Dynamic, 1> DenseRealVector;
120 typedef Matrix<ComplexScalar, Dynamic, 1> ComplexVector;
121
124 : Base(), m_restart(30), m_neig(0), m_r(0), m_maxNeig(5), m_isDeflAllocated(false), m_isDeflInitialized(false) {}
125
136 template <typename MatrixDerived>
138 : Base(A.derived()),
139 m_restart(30),
140 m_neig(0),
141 m_r(0),
142 m_maxNeig(5),
143 m_isDeflAllocated(false),
144 m_isDeflInitialized(false) {}
145
146 ~DGMRES() {}
147
149 template <typename Rhs, typename Dest>
150 void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const {
151 EIGEN_STATIC_ASSERT(Rhs::ColsAtCompileTime == 1 || Dest::ColsAtCompileTime == 1,
152 YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX);
153
154 m_iterations = Base::maxIterations();
155 m_error = Base::m_tolerance;
156
157 dgmres(matrix(), b, x, Base::m_preconditioner);
158 }
159
163 Index restart() { return m_restart; }
164
168 void set_restart(const Index restart) { m_restart = restart; }
169
173 void setEigenv(const Index neig) {
174 m_neig = neig;
175 if (neig + 1 > m_maxNeig) m_maxNeig = neig + 1; // To allow for complex conjugates
176 }
177
181 Index deflSize() { return m_r; }
182
186 void setMaxEigenv(const Index maxNeig) { m_maxNeig = maxNeig; }
187
188 protected:
189 // DGMRES algorithm
190 template <typename Rhs, typename Dest>
191 void dgmres(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
192 // Perform one cycle of GMRES
193 template <typename Dest>
194 Index dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta,
195 const RealScalar& normRhs, Index& nbIts) const;
196 // Compute data to use for deflation
197 Index dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it,
198 StorageIndex& neig) const;
199 // Apply deflation to a vector
200 template <typename RhsType, typename DestType>
201 Index dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
202 ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
203 ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
204 // Init data for deflation
205 void dgmresInitDeflation(Index& rows) const;
206 mutable DenseMatrix m_V; // Krylov basis vectors
207 mutable DenseMatrix m_H; // Hessenberg matrix
208 mutable DenseMatrix m_Hes; // Initial hessenberg matrix without Givens rotations applied
209 mutable Index m_restart; // Maximum size of the Krylov subspace
210 mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
211 mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
212 mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
213 mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
214 mutable StorageIndex m_neig; // Number of eigenvalues to extract at each restart
215 mutable Index m_r; // Current number of deflated eigenvalues, size of m_U
216 mutable Index m_maxNeig; // Maximum number of eigenvalues to deflate
217 mutable RealScalar m_lambdaN; // Modulus of the largest eigenvalue of A
218 mutable bool m_isDeflAllocated;
219 mutable bool m_isDeflInitialized;
220
221 // Adaptive strategy
222 mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
223 mutable bool m_force; // Force the use of deflation at each restart
224};
225
231template <typename MatrixType_, typename Preconditioner_>
232template <typename Rhs, typename Dest>
233void DGMRES<MatrixType_, Preconditioner_>::dgmres(const MatrixType& mat, const Rhs& rhs, Dest& x,
234 const Preconditioner& precond) const {
235 const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
236
237 RealScalar normRhs = rhs.norm();
238 if (normRhs <= considerAsZero) {
239 x.setZero();
240 m_error = 0;
241 return;
242 }
243
244 // Initialization
245 m_isDeflInitialized = false;
246 Index n = mat.rows();
247 DenseVector r0(n);
248 Index nbIts = 0;
249 m_H.resize(m_restart + 1, m_restart);
250 m_Hes.resize(m_restart, m_restart);
251 m_V.resize(n, m_restart + 1);
252 // Initial residual vector and initial norm
253 if (x.squaredNorm() == 0) x = precond.solve(rhs);
254 r0 = rhs - mat * x;
255 RealScalar beta = r0.norm();
256
257 m_error = beta / normRhs;
258 if (m_error < m_tolerance)
259 m_info = Success;
260 else
261 m_info = NoConvergence;
262
263 // Iterative process
264 while (nbIts < m_iterations && m_info == NoConvergence) {
265 dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
266
267 // Compute the new residual vector for the restart
268 if (nbIts < m_iterations && m_info == NoConvergence) {
269 r0 = rhs - mat * x;
270 beta = r0.norm();
271 }
272 }
273}
274
285template <typename MatrixType_, typename Preconditioner_>
286template <typename Dest>
287Index DGMRES<MatrixType_, Preconditioner_>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x,
288 DenseVector& r0, RealScalar& beta, const RealScalar& normRhs,
289 Index& nbIts) const {
290 // Initialization
291 DenseVector g(m_restart + 1); // Right hand side of the least square problem
292 g.setZero();
293 g(0) = Scalar(beta);
294 m_V.col(0) = r0 / beta;
295 m_info = NoConvergence;
296 std::vector<JacobiRotation<Scalar> > gr(m_restart); // Givens rotations
297 Index it = 0; // Number of inner iterations
298 Index n = mat.rows();
299 DenseVector tv1(n), tv2(n); // Temporary vectors
300 while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations) {
301 // Apply preconditioner(s) at right
302 if (m_isDeflInitialized) {
303 dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
304 tv2 = precond.solve(tv1);
305 } else {
306 tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
307 }
308 tv1 = mat * tv2;
309
310 // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
311 Scalar coef;
312 for (Index i = 0; i <= it; ++i) {
313 coef = tv1.dot(m_V.col(i));
314 tv1 = tv1 - coef * m_V.col(i);
315 m_H(i, it) = coef;
316 m_Hes(i, it) = coef;
317 }
318 // Normalize the vector
319 coef = tv1.norm();
320 m_V.col(it + 1) = tv1 / coef;
321 m_H(it + 1, it) = coef;
322 // m_Hes(it+1,it) = coef;
323
324 // FIXME Check for happy breakdown
325
326 // Update Hessenberg matrix with Givens rotations
327 for (Index i = 1; i <= it; ++i) {
328 m_H.col(it).applyOnTheLeft(i - 1, i, gr[i - 1].adjoint());
329 }
330 // Compute the new plane rotation
331 gr[it].makeGivens(m_H(it, it), m_H(it + 1, it));
332 // Apply the new rotation
333 m_H.col(it).applyOnTheLeft(it, it + 1, gr[it].adjoint());
334 g.applyOnTheLeft(it, it + 1, gr[it].adjoint());
335
336 beta = std::abs(g(it + 1));
337 m_error = beta / normRhs;
338 // std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
339 it++;
340 nbIts++;
341
342 if (m_error < m_tolerance) {
343 // The method has converged
344 m_info = Success;
345 break;
346 }
347 }
348
349 // Compute the new coefficients by solving the least square problem
350 // it++;
351 // FIXME Check first if the matrix is singular ... zero diagonal
352 DenseVector nrs(m_restart);
353 nrs = m_H.topLeftCorner(it, it).template triangularView<Upper>().solve(g.head(it));
354
355 // Form the new solution
356 if (m_isDeflInitialized) {
357 tv1 = m_V.leftCols(it) * nrs;
358 dgmresApplyDeflation(tv1, tv2);
359 x = x + precond.solve(tv2);
360 } else
361 x = x + precond.solve(m_V.leftCols(it) * nrs);
362
363 // Go for a new cycle and compute data for deflation
364 if (nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r + m_neig) < m_maxNeig)
365 dgmresComputeDeflationData(mat, precond, it, m_neig);
366 return 0;
367}
368
369template <typename MatrixType_, typename Preconditioner_>
370void DGMRES<MatrixType_, Preconditioner_>::dgmresInitDeflation(Index& rows) const {
371 m_U.resize(rows, m_maxNeig);
372 m_MU.resize(rows, m_maxNeig);
373 m_T.resize(m_maxNeig, m_maxNeig);
374 m_lambdaN = 0.0;
375 m_isDeflAllocated = true;
376}
377
378template <typename MatrixType_, typename Preconditioner_>
379inline typename DGMRES<MatrixType_, Preconditioner_>::ComplexVector DGMRES<MatrixType_, Preconditioner_>::schurValues(
380 const ComplexSchur<DenseMatrix>& schurofH) const {
381 return schurofH.matrixT().diagonal();
382}
383
384template <typename MatrixType_, typename Preconditioner_>
385inline typename DGMRES<MatrixType_, Preconditioner_>::ComplexVector DGMRES<MatrixType_, Preconditioner_>::schurValues(
386 const RealSchur<DenseMatrix>& schurofH) const {
387 const DenseMatrix& T = schurofH.matrixT();
388 Index it = T.rows();
389 ComplexVector eig(it);
390 Index j = 0;
391 while (j < it - 1) {
392 if (T(j + 1, j) == Scalar(0)) {
393 eig(j) = ComplexScalar(T(j, j), RealScalar(0));
394 j++;
395 } else {
396 eig(j) = ComplexScalar(T(j, j), T(j + 1, j));
397 eig(j + 1) = ComplexScalar(T(j, j + 1), T(j + 1, j + 1));
398 j++;
399 }
400 }
401 if (j < it - 1) eig(j) = ComplexScalar(T(j, j), RealScalar(0));
402 return eig;
403}
404
405template <typename MatrixType_, typename Preconditioner_>
406Index DGMRES<MatrixType_, Preconditioner_>::dgmresComputeDeflationData(const MatrixType& mat,
407 const Preconditioner& precond, const Index& it,
408 StorageIndex& neig) const {
409 // First, find the Schur form of the Hessenberg matrix H
410 std::conditional_t<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> > schurofH;
411 bool computeU = true;
412 DenseMatrix matrixQ(it, it);
413 matrixQ.setIdentity();
414 schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it, it), matrixQ, computeU);
415
416 ComplexVector eig(it);
418 eig = this->schurValues(schurofH);
419
420 // Reorder the absolute values of Schur values
421 DenseRealVector modulEig(it);
422 for (Index j = 0; j < it; ++j) modulEig(j) = std::abs(eig(j));
423 perm.setLinSpaced(it, 0, internal::convert_index<StorageIndex>(it - 1));
424 internal::sortWithPermutation(modulEig, perm, neig);
425
426 if (!m_lambdaN) {
427 m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
428 }
429 // Count the real number of extracted eigenvalues (with complex conjugates)
430 Index nbrEig = 0;
431 while (nbrEig < neig) {
432 if (eig(perm(it - nbrEig - 1)).imag() == RealScalar(0))
433 nbrEig++;
434 else
435 nbrEig += 2;
436 }
437 // Extract the Schur vectors corresponding to the smallest Ritz values
438 DenseMatrix Sr(it, nbrEig);
439 Sr.setZero();
440 for (Index j = 0; j < nbrEig; j++) {
441 Sr.col(j) = schurofH.matrixU().col(perm(it - j - 1));
442 }
443
444 // Form the Schur vectors of the initial matrix using the Krylov basis
445 DenseMatrix X;
446 X = m_V.leftCols(it) * Sr;
447 if (m_r) {
448 // Orthogonalize X against m_U using modified Gram-Schmidt
449 for (Index j = 0; j < nbrEig; j++)
450 for (Index k = 0; k < m_r; k++) X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j))) * m_U.col(k);
451 }
452
453 // Compute m_MX = A * M^-1 * X
454 Index m = m_V.rows();
455 if (!m_isDeflAllocated) dgmresInitDeflation(m);
456 DenseMatrix MX(m, nbrEig);
457 DenseVector tv1(m);
458 for (Index j = 0; j < nbrEig; j++) {
459 tv1 = mat * X.col(j);
460 MX.col(j) = precond.solve(tv1);
461 }
462
463 // Update m_T = [U'MU U'MX; X'MU X'MX]
464 m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
465 if (m_r) {
466 m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
467 m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
468 }
469
470 // Save X into m_U and m_MX in m_MU
471 for (Index j = 0; j < nbrEig; j++) m_U.col(m_r + j) = X.col(j);
472 for (Index j = 0; j < nbrEig; j++) m_MU.col(m_r + j) = MX.col(j);
473 // Increase the size of the invariant subspace
474 m_r += nbrEig;
475
476 // Factorize m_T into m_luT
477 m_luT.compute(m_T.topLeftCorner(m_r, m_r));
478
479 // FIXME CHeck if the factorization was correctly done (nonsingular matrix)
480 m_isDeflInitialized = true;
481 return 0;
482}
483template <typename MatrixType_, typename Preconditioner_>
484template <typename RhsType, typename DestType>
485Index DGMRES<MatrixType_, Preconditioner_>::dgmresApplyDeflation(const RhsType& x, DestType& y) const {
486 DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
487 y = x + m_U.leftCols(m_r) * (m_lambdaN * m_luT.solve(x1) - x1);
488 return 0;
489}
490
491} // end namespace Eigen
492#endif
A Restarted GMRES with deflation. This class implements a modification of the GMRES solver for sparse...
Definition DGMRES.h:98
Index dgmresCycle(const MatrixType &mat, const Preconditioner &precond, Dest &x, DenseVector &r0, RealScalar &beta, const RealScalar &normRhs, Index &nbIts) const
Perform one restart cycle of DGMRES.
Definition DGMRES.h:287
Index restart()
Definition DGMRES.h:163
DGMRES(const EigenBase< MatrixDerived > &A)
Definition DGMRES.h:137
void setMaxEigenv(const Index maxNeig)
Definition DGMRES.h:186
DGMRES()
Definition DGMRES.h:123
void dgmres(const MatrixType &mat, const Rhs &rhs, Dest &x, const Preconditioner &precond) const
Perform several cycles of restarted GMRES with modified Gram Schmidt,.
Definition DGMRES.h:233
void set_restart(const Index restart)
Definition DGMRES.h:168
Index deflSize()
Definition DGMRES.h:181
void setEigenv(const Index neig)
Definition DGMRES.h:173
Derived & setZero(Index rows, Index cols)
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_imag_op< typename Derived::Scalar >, const Derived > imag(const Eigen::ArrayBase< Derived > &x)