Eigen  5.0.1-dev+284dcc12
 
Loading...
Searching...
No Matches
Half.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// This Source Code Form is subject to the terms of the Mozilla
5// Public License v. 2.0. If a copy of the MPL was not distributed
6// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
7//
8// The conversion routines are Copyright (c) Fabian Giesen, 2016.
9// The original license follows:
10//
11// Copyright (c) Fabian Giesen, 2016
12// All rights reserved.
13// Redistribution and use in source and binary forms, with or without
14// modification, are permitted.
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27// Standard 16-bit float type, mostly useful for GPUs. Defines a new
28// type Eigen::half (inheriting either from CUDA's or HIP's __half struct) with
29// operator overloads such that it behaves basically as an arithmetic
30// type. It will be quite slow on CPUs (so it is recommended to stay
31// in fp32 for CPUs, except for simple parameter conversions, I/O
32// to disk and the likes), but fast on GPUs.
33
34#ifndef EIGEN_HALF_H
35#define EIGEN_HALF_H
36
37// IWYU pragma: private
38#include "../../InternalHeaderCheck.h"
39
40// When compiling with GPU support, the "__half_raw" base class as well as
41// some other routines are defined in the GPU compiler header files
42// (cuda_fp16.h, hip_fp16.h), and they are not tagged constexpr
43// As a consequence, we get compile failures when compiling Eigen with
44// GPU support. Hence the need to disable EIGEN_CONSTEXPR when building
45// Eigen with GPU support.
46// Any functions that require `numext::bit_cast` may also not be constexpr,
47// including any native types when setting via raw bit values.
48#if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16)
49#define _EIGEN_MAYBE_CONSTEXPR
50#else
51#define _EIGEN_MAYBE_CONSTEXPR constexpr
52#endif
53
54#define F16_PACKET_FUNCTION(PACKET_F, PACKET_F16, METHOD) \
55 template <> \
56 EIGEN_UNUSED EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC PACKET_F16 METHOD<PACKET_F16>(const PACKET_F16& _x) { \
57 return float2half(METHOD<PACKET_F>(half2float(_x))); \
58 }
59
60namespace Eigen {
61
62struct half;
63
64namespace half_impl {
65
66// We want to use the __half_raw struct from the HIP header file only during the device compile phase.
67// This is required because of a quirk in the way TensorFlow GPU builds are done.
68// When compiling TensorFlow source code with GPU support, files that
69// * contain GPU kernels (i.e. *.cu.cc files) are compiled via hipcc
70// * do not contain GPU kernels ( i.e. *.cc files) are compiled via gcc (typically)
71//
72// Tensorflow uses the Eigen::half type as its FP16 type, and there are functions that
73// * are defined in a file that gets compiled via hipcc AND
74// * have Eigen::half as a pass-by-value argument AND
75// * are called in a file that gets compiled via gcc
76//
77// In the scenario described above the caller and callee will see different versions
78// of the Eigen::half base class __half_raw, and they will be compiled by different compilers
79//
80// There appears to be an ABI mismatch between gcc and clang (which is called by hipcc) that results in
81// the callee getting corrupted values for the Eigen::half argument.
82//
83// Making the host side compile phase of hipcc use the same Eigen::half impl, as the gcc compile, resolves
84// this error, and hence the following convoluted #if condition
85#if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE)
86
87// Make our own __half_raw definition that is similar to CUDA's.
88struct __half_raw {
89 struct construct_from_rep_tag {};
90#if (defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE))
91 // Eigen::half can be used as the datatype for shared memory declarations (in Eigen and TF)
92 // The element type for shared memory cannot have non-trivial constructors
93 // and hence the following special casing (which skips the zero-initilization).
94 // Note that this check gets done even in the host compilation phase, and
95 // hence the need for this
96 EIGEN_DEVICE_FUNC __half_raw() {}
97#else
98 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR __half_raw() : x(0) {}
99#endif
100
101#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
102 explicit EIGEN_DEVICE_FUNC __half_raw(numext::uint16_t raw) : x(numext::bit_cast<__fp16>(raw)) {}
103 EIGEN_DEVICE_FUNC constexpr __half_raw(construct_from_rep_tag, __fp16 rep) : x{rep} {}
104 __fp16 x;
105#elif defined(EIGEN_HAS_BUILTIN_FLOAT16)
106 explicit EIGEN_DEVICE_FUNC __half_raw(numext::uint16_t raw) : x(numext::bit_cast<_Float16>(raw)) {}
107 EIGEN_DEVICE_FUNC constexpr __half_raw(construct_from_rep_tag, _Float16 rep) : x{rep} {}
108 _Float16 x;
109#else
110 explicit EIGEN_DEVICE_FUNC constexpr __half_raw(numext::uint16_t raw) : x(raw) {}
111 EIGEN_DEVICE_FUNC constexpr __half_raw(construct_from_rep_tag, numext::uint16_t rep) : x{rep} {}
112 numext::uint16_t x;
113#endif
114};
115
116#elif defined(EIGEN_HAS_HIP_FP16)
117// HIP GPU compile phase: nothing to do here.
118// HIP fp16 header file has a definition for __half_raw
119#elif defined(EIGEN_HAS_CUDA_FP16)
120
121// CUDA GPU compile phase.
122#if EIGEN_CUDA_SDK_VER < 90000
123// In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw
124typedef __half __half_raw;
125#endif // defined(EIGEN_HAS_CUDA_FP16)
126
127#elif defined(SYCL_DEVICE_ONLY)
128typedef cl::sycl::half __half_raw;
129#endif
130
131EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x);
132EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff);
133EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h);
134
135struct half_base : public __half_raw {
136 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base() {}
137 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base(const __half_raw& h) : __half_raw(h) {}
138
139#if defined(EIGEN_HAS_GPU_FP16)
140#if defined(EIGEN_HAS_HIP_FP16)
141 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base(const __half& h) { x = __half_as_ushort(h); }
142#elif defined(EIGEN_HAS_CUDA_FP16)
143#if EIGEN_CUDA_SDK_VER >= 90000
144 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {}
145#endif
146#endif
147#endif
148};
149
150} // namespace half_impl
151
152// Class definition.
153struct half : public half_impl::half_base {
154 // Writing this out as separate #if-else blocks to make the code easier to follow
155 // The same applies to most #if-else blocks in this file
156#if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE)
157 // Use the same base class for the following two scenarios
158 // * when compiling without GPU support enabled
159 // * during host compile phase when compiling with GPU support enabled
160 typedef half_impl::__half_raw __half_raw;
161#elif defined(EIGEN_HAS_HIP_FP16)
162 // Nothing to do here
163 // HIP fp16 header file has a definition for __half_raw
164#elif defined(EIGEN_HAS_CUDA_FP16)
165// Note that EIGEN_CUDA_SDK_VER is set to 0 even when compiling with HIP, so
166// (EIGEN_CUDA_SDK_VER < 90000) is true even for HIP! So keeping this within
167// #if defined(EIGEN_HAS_CUDA_FP16) is needed
168#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
169 typedef half_impl::__half_raw __half_raw;
170#endif
171#endif
172
173 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half() {}
174
175 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(const __half_raw& h) : half_impl::half_base(h) {}
176
177#if defined(EIGEN_HAS_GPU_FP16)
178#if defined(EIGEN_HAS_HIP_FP16)
179 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {}
180#elif defined(EIGEN_HAS_CUDA_FP16)
181#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000
182 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {}
183#endif
184#endif
185#endif
186
187#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
188 explicit EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(__fp16 b)
189 : half(__half_raw(__half_raw::construct_from_rep_tag(), b)) {}
190#elif defined(EIGEN_HAS_BUILTIN_FLOAT16)
191 explicit EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(_Float16 b)
192 : half(__half_raw(__half_raw::construct_from_rep_tag(), b)) {}
193#endif
194
195 explicit EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(bool b)
196 : half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {}
197 template <class T>
198 explicit EIGEN_DEVICE_FUNC half(T val)
199 : half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(val))) {}
200 explicit EIGEN_DEVICE_FUNC half(float f) : half_impl::half_base(half_impl::float_to_half_rtne(f)) {}
201
202 // Following the convention of numpy, converting between complex and
203 // float will lead to loss of imag value.
204 template <typename RealScalar>
205 explicit EIGEN_DEVICE_FUNC half(std::complex<RealScalar> c)
206 : half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(c.real()))) {}
207
208 EIGEN_DEVICE_FUNC operator float() const { // NOLINT: Allow implicit conversion to float, because it is lossless.
209 return half_impl::half_to_float(*this);
210 }
211
212#if defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE)
213 EIGEN_DEVICE_FUNC operator __half() const {
214 ::__half_raw hr;
215 hr.x = x;
216 return __half(hr);
217 }
218#endif
219};
220
221// TODO(majnemer): Get rid of this once we can rely on C++17 inline variables do
222// solve the ODR issue.
223namespace half_impl {
224template <typename = void>
225struct numeric_limits_half_impl {
226 static constexpr const bool is_specialized = true;
227 static constexpr const bool is_signed = true;
228 static constexpr const bool is_integer = false;
229 static constexpr const bool is_exact = false;
230 static constexpr const bool has_infinity = true;
231 static constexpr const bool has_quiet_NaN = true;
232 static constexpr const bool has_signaling_NaN = true;
233 EIGEN_DIAGNOSTICS(push)
234 EIGEN_DISABLE_DEPRECATED_WARNING
235 static constexpr const std::float_denorm_style has_denorm = std::denorm_present;
236 static constexpr const bool has_denorm_loss = false;
237 EIGEN_DIAGNOSTICS(pop)
238 static constexpr const std::float_round_style round_style = std::round_to_nearest;
239 static constexpr const bool is_iec559 = true;
240 // The C++ standard defines this as "true if the set of values representable
241 // by the type is finite." Half has finite precision.
242 static constexpr const bool is_bounded = true;
243 static constexpr const bool is_modulo = false;
244 static constexpr const int digits = 11;
245 static constexpr const int digits10 =
246 3; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
247 static constexpr const int max_digits10 =
248 5; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
249 static constexpr const int radix = std::numeric_limits<float>::radix;
250 static constexpr const int min_exponent = -13;
251 static constexpr const int min_exponent10 = -4;
252 static constexpr const int max_exponent = 16;
253 static constexpr const int max_exponent10 = 4;
254 static constexpr const bool traps = std::numeric_limits<float>::traps;
255 // IEEE754: "The implementer shall choose how tininess is detected, but shall
256 // detect tininess in the same way for all operations in radix two"
257 static constexpr const bool tinyness_before = std::numeric_limits<float>::tinyness_before;
258
259 static _EIGEN_MAYBE_CONSTEXPR Eigen::half(min)() { return Eigen::half_impl::raw_uint16_to_half(0x0400); }
260 static _EIGEN_MAYBE_CONSTEXPR Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); }
261 static _EIGEN_MAYBE_CONSTEXPR Eigen::half(max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); }
262 static _EIGEN_MAYBE_CONSTEXPR Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x1400); }
263 static _EIGEN_MAYBE_CONSTEXPR Eigen::half round_error() { return Eigen::half_impl::raw_uint16_to_half(0x3800); }
264 static _EIGEN_MAYBE_CONSTEXPR Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); }
265 static _EIGEN_MAYBE_CONSTEXPR Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); }
266 static _EIGEN_MAYBE_CONSTEXPR Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7d00); }
267 static _EIGEN_MAYBE_CONSTEXPR Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x0001); }
268};
269
270template <typename T>
271constexpr const bool numeric_limits_half_impl<T>::is_specialized;
272template <typename T>
273constexpr const bool numeric_limits_half_impl<T>::is_signed;
274template <typename T>
275constexpr const bool numeric_limits_half_impl<T>::is_integer;
276template <typename T>
277constexpr const bool numeric_limits_half_impl<T>::is_exact;
278template <typename T>
279constexpr const bool numeric_limits_half_impl<T>::has_infinity;
280template <typename T>
281constexpr const bool numeric_limits_half_impl<T>::has_quiet_NaN;
282template <typename T>
283constexpr const bool numeric_limits_half_impl<T>::has_signaling_NaN;
284EIGEN_DIAGNOSTICS(push)
285EIGEN_DISABLE_DEPRECATED_WARNING
286template <typename T>
287constexpr const std::float_denorm_style numeric_limits_half_impl<T>::has_denorm;
288template <typename T>
289constexpr const bool numeric_limits_half_impl<T>::has_denorm_loss;
290EIGEN_DIAGNOSTICS(pop)
291template <typename T>
292constexpr const std::float_round_style numeric_limits_half_impl<T>::round_style;
293template <typename T>
294constexpr const bool numeric_limits_half_impl<T>::is_iec559;
295template <typename T>
296constexpr const bool numeric_limits_half_impl<T>::is_bounded;
297template <typename T>
298constexpr const bool numeric_limits_half_impl<T>::is_modulo;
299template <typename T>
300constexpr const int numeric_limits_half_impl<T>::digits;
301template <typename T>
302constexpr const int numeric_limits_half_impl<T>::digits10;
303template <typename T>
304constexpr const int numeric_limits_half_impl<T>::max_digits10;
305template <typename T>
306constexpr const int numeric_limits_half_impl<T>::radix;
307template <typename T>
308constexpr const int numeric_limits_half_impl<T>::min_exponent;
309template <typename T>
310constexpr const int numeric_limits_half_impl<T>::min_exponent10;
311template <typename T>
312constexpr const int numeric_limits_half_impl<T>::max_exponent;
313template <typename T>
314constexpr const int numeric_limits_half_impl<T>::max_exponent10;
315template <typename T>
316constexpr const bool numeric_limits_half_impl<T>::traps;
317template <typename T>
318constexpr const bool numeric_limits_half_impl<T>::tinyness_before;
319} // end namespace half_impl
320} // end namespace Eigen
321
322namespace std {
323// If std::numeric_limits<T> is specialized, should also specialize
324// std::numeric_limits<const T>, std::numeric_limits<volatile T>, and
325// std::numeric_limits<const volatile T>
326// https://stackoverflow.com/a/16519653/
327template <>
328class numeric_limits<Eigen::half> : public Eigen::half_impl::numeric_limits_half_impl<> {};
329template <>
330class numeric_limits<const Eigen::half> : public numeric_limits<Eigen::half> {};
331template <>
332class numeric_limits<volatile Eigen::half> : public numeric_limits<Eigen::half> {};
333template <>
334class numeric_limits<const volatile Eigen::half> : public numeric_limits<Eigen::half> {};
335} // end namespace std
336
337namespace Eigen {
338
339namespace half_impl {
340
341#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \
342 (defined(EIGEN_HAS_HIP_FP16) && defined(HIP_DEVICE_COMPILE))
343// Note: We deliberately do *not* define this to 1 even if we have Arm's native
344// fp16 type since GPU half types are rather different from native CPU half types.
345#define EIGEN_HAS_NATIVE_GPU_FP16
346#endif
347
348// Intrinsics for native fp16 support. Note that on current hardware,
349// these are no faster than fp32 arithmetic (you need to use the half2
350// versions to get the ALU speed increased), but you do save the
351// conversion steps back and forth.
352
353#if defined(EIGEN_HAS_NATIVE_GPU_FP16)
354EIGEN_STRONG_INLINE __device__ half operator+(const half& a, const half& b) {
355#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000
356 return __hadd(::__half(a), ::__half(b));
357#else
358 return __hadd(a, b);
359#endif
360}
361EIGEN_STRONG_INLINE __device__ half operator*(const half& a, const half& b) { return __hmul(a, b); }
362EIGEN_STRONG_INLINE __device__ half operator-(const half& a, const half& b) { return __hsub(a, b); }
363EIGEN_STRONG_INLINE __device__ half operator/(const half& a, const half& b) {
364#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000
365 return __hdiv(a, b);
366#else
367 float num = __half2float(a);
368 float denom = __half2float(b);
369 return __float2half(num / denom);
370#endif
371}
372EIGEN_STRONG_INLINE __device__ half operator-(const half& a) { return __hneg(a); }
373EIGEN_STRONG_INLINE __device__ half& operator+=(half& a, const half& b) {
374 a = a + b;
375 return a;
376}
377EIGEN_STRONG_INLINE __device__ half& operator*=(half& a, const half& b) {
378 a = a * b;
379 return a;
380}
381EIGEN_STRONG_INLINE __device__ half& operator-=(half& a, const half& b) {
382 a = a - b;
383 return a;
384}
385EIGEN_STRONG_INLINE __device__ half& operator/=(half& a, const half& b) {
386 a = a / b;
387 return a;
388}
389EIGEN_STRONG_INLINE __device__ bool operator==(const half& a, const half& b) { return __heq(a, b); }
390EIGEN_STRONG_INLINE __device__ bool operator!=(const half& a, const half& b) { return __hne(a, b); }
391EIGEN_STRONG_INLINE __device__ bool operator<(const half& a, const half& b) { return __hlt(a, b); }
392EIGEN_STRONG_INLINE __device__ bool operator<=(const half& a, const half& b) { return __hle(a, b); }
393EIGEN_STRONG_INLINE __device__ bool operator>(const half& a, const half& b) { return __hgt(a, b); }
394EIGEN_STRONG_INLINE __device__ bool operator>=(const half& a, const half& b) { return __hge(a, b); }
395
396#endif // EIGEN_HAS_NATIVE_GPU_FP16
397
398#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) && !defined(EIGEN_GPU_COMPILE_PHASE)
399EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(vaddh_f16(a.x, b.x)); }
400EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(vmulh_f16(a.x, b.x)); }
401EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(vsubh_f16(a.x, b.x)); }
402EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(vdivh_f16(a.x, b.x)); }
403EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) { return half(vnegh_f16(a.x)); }
404EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) {
405 a = half(vaddh_f16(a.x, b.x));
406 return a;
407}
408EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) {
409 a = half(vmulh_f16(a.x, b.x));
410 return a;
411}
412EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) {
413 a = half(vsubh_f16(a.x, b.x));
414 return a;
415}
416EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) {
417 a = half(vdivh_f16(a.x, b.x));
418 return a;
419}
420EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) { return vceqh_f16(a.x, b.x); }
421EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { return !vceqh_f16(a.x, b.x); }
422EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) { return vclth_f16(a.x, b.x); }
423EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) { return vcleh_f16(a.x, b.x); }
424EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) { return vcgth_f16(a.x, b.x); }
425EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) { return vcgeh_f16(a.x, b.x); }
426
427#elif defined(EIGEN_HAS_BUILTIN_FLOAT16) && !defined(EIGEN_GPU_COMPILE_PHASE)
428
429EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(a.x + b.x); }
430EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(a.x * b.x); }
431EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(a.x - b.x); }
432EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(a.x / b.x); }
433EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) { return half(-a.x); }
434EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) {
435 a = a + b;
436 return a;
437}
438EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) {
439 a = a * b;
440 return a;
441}
442EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) {
443 a = a - b;
444 return a;
445}
446EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) {
447 a = a / b;
448 return a;
449}
450EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) { return a.x == b.x; }
451EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { return a.x != b.x; }
452EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) { return a.x < b.x; }
453EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) { return a.x <= b.x; }
454EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) { return a.x > b.x; }
455EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) { return a.x >= b.x; }
456
457// We need to distinguish ‘clang as the CUDA compiler’ from ‘clang as the host compiler,
458// invoked by NVCC’ (e.g. on MacOS). The former needs to see both host and device implementation
459// of the functions, while the latter can only deal with one of them.
460#elif !defined(EIGEN_HAS_NATIVE_GPU_FP16) || (EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC) // Emulate support for half floats
461
462#if EIGEN_COMP_CLANG && defined(EIGEN_GPUCC)
463// We need to provide emulated *host-side* FP16 operators for clang.
464#pragma push_macro("EIGEN_DEVICE_FUNC")
465#undef EIGEN_DEVICE_FUNC
466#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_HAS_NATIVE_GPU_FP16)
467#define EIGEN_DEVICE_FUNC __host__
468#else // both host and device need emulated ops.
469#define EIGEN_DEVICE_FUNC __host__ __device__
470#endif
471#endif
472
473// Definitions for CPUs and older HIP+CUDA, mostly working through conversion
474// to/from fp32.
475EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(float(a) + float(b)); }
476EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(float(a) * float(b)); }
477EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(float(a) - float(b)); }
478EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(float(a) / float(b)); }
479EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) {
480 half result;
481 result.x = a.x ^ 0x8000;
482 return result;
483}
484EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) {
485 a = half(float(a) + float(b));
486 return a;
487}
488EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) {
489 a = half(float(a) * float(b));
490 return a;
491}
492EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) {
493 a = half(float(a) - float(b));
494 return a;
495}
496EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) {
497 a = half(float(a) / float(b));
498 return a;
499}
500
501// Non-negative floating point numbers have a monotonic mapping to non-negative integers.
502// This property allows floating point numbers to be reinterpreted as integers for comparisons, which is useful if there
503// is no native floating point comparison operator. Floating point signedness is handled by the sign-magnitude
504// representation, whereas integers typically use two's complement. Converting the bit pattern from sign-magnitude to
505// two's complement allows the transformed bit patterns be compared as signed integers. All edge cases (+/-0 and +/-
506// infinity) are handled automatically, except NaN.
507//
508// fp16 uses 1 sign bit, 5 exponent bits, and 10 mantissa bits. The bit pattern conveys NaN when all the exponent
509// bits (5) are set, and at least one mantissa bit is set. The sign bit is irrelevant for determining NaN. To check for
510// NaN, clear the sign bit and check if the integral representation is greater than 01111100000000. To test
511// for non-NaN, clear the sign bit and check if the integeral representation is less than or equal to 01111100000000.
512
513// convert sign-magnitude representation to two's complement
514EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int16_t mapToSigned(uint16_t a) {
515 constexpr uint16_t kAbsMask = (1 << 15) - 1;
516 // If the sign bit is set, clear the sign bit and return the (integer) negation. Otherwise, return the input.
517 return (a >> 15) ? -(a & kAbsMask) : a;
518}
519EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool isOrdered(const half& a, const half& b) {
520 constexpr uint16_t kInf = ((1 << 5) - 1) << 10;
521 constexpr uint16_t kAbsMask = (1 << 15) - 1;
522 return numext::maxi(a.x & kAbsMask, b.x & kAbsMask) <= kInf;
523}
524EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) {
525 bool result = mapToSigned(a.x) == mapToSigned(b.x);
526 result &= isOrdered(a, b);
527 return result;
528}
529EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { return !(a == b); }
530EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) {
531 bool result = mapToSigned(a.x) < mapToSigned(b.x);
532 result &= isOrdered(a, b);
533 return result;
534}
535EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) {
536 bool result = mapToSigned(a.x) <= mapToSigned(b.x);
537 result &= isOrdered(a, b);
538 return result;
539}
540EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) {
541 bool result = mapToSigned(a.x) > mapToSigned(b.x);
542 result &= isOrdered(a, b);
543 return result;
544}
545EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) {
546 bool result = mapToSigned(a.x) >= mapToSigned(b.x);
547 result &= isOrdered(a, b);
548 return result;
549}
550
551#if EIGEN_COMP_CLANG && defined(EIGEN_GPUCC)
552#pragma pop_macro("EIGEN_DEVICE_FUNC")
553#endif
554
555#endif // Emulate support for half floats
556
557// Division by an index. Do it in full float precision to avoid accuracy
558// issues in converting the denominator to half.
559EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, Index b) {
560 return half(static_cast<float>(a) / static_cast<float>(b));
561}
562
563EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a) {
564 a += half(1);
565 return a;
566}
567
568EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a) {
569 a -= half(1);
570 return a;
571}
572
573EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a, int) {
574 half original_value = a;
575 ++a;
576 return original_value;
577}
578
579EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a, int) {
580 half original_value = a;
581 --a;
582 return original_value;
583}
584
585// Conversion routines, including fallbacks for the host or older CUDA.
586// Note that newer Intel CPUs (Haswell or newer) have vectorized versions of
587// these in hardware. If we need more performance on older/other CPUs, they are
588// also possible to vectorize directly.
589
590EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x) {
591 // We cannot simply do a "return __half_raw(x)" here, because __half_raw is union type
592 // in the hip_fp16 header file, and that will trigger a compile error
593 // On the other hand, having anything but a return statement also triggers a compile error
594 // because this is constexpr function.
595 // Fortunately, since we need to disable EIGEN_CONSTEXPR for GPU anyway, we can get out
596 // of this catch22 by having separate bodies for GPU / non GPU
597#if defined(EIGEN_HAS_GPU_FP16)
598 __half_raw h;
599 h.x = x;
600 return h;
601#else
602 return __half_raw(x);
603#endif
604}
605
606EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC numext::uint16_t raw_half_as_uint16(const __half_raw& h) {
607 // HIP/CUDA/Default have a member 'x' of type uint16_t.
608 // For ARM64 native half, the member 'x' is of type __fp16, so we need to bit-cast.
609 // For SYCL, cl::sycl::half is _Float16, so cast directly.
610#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
611 return numext::bit_cast<numext::uint16_t>(h.x);
612#elif defined(EIGEN_HAS_BUILTIN_FLOAT16)
613 return numext::bit_cast<numext::uint16_t>(h.x);
614#elif defined(SYCL_DEVICE_ONLY)
615 return numext::bit_cast<numext::uint16_t>(h);
616#else
617 return h.x;
618#endif
619}
620
621EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) {
622#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
623 (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
624 __half tmp_ff = __float2half(ff);
625 return *(__half_raw*)&tmp_ff;
626
627#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
628 __half_raw h;
629 h.x = static_cast<__fp16>(ff);
630 return h;
631
632#elif defined(EIGEN_HAS_BUILTIN_FLOAT16)
633 __half_raw h;
634 h.x = static_cast<_Float16>(ff);
635 return h;
636
637#elif defined(EIGEN_HAS_FP16_C)
638 __half_raw h;
639#if EIGEN_COMP_MSVC
640 // MSVC does not have scalar instructions.
641 h.x = _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(ff), 0), 0);
642#else
643 h.x = _cvtss_sh(ff, 0);
644#endif
645 return h;
646
647#else
648 uint32_t f_bits = Eigen::numext::bit_cast<uint32_t>(ff);
649 const uint32_t f32infty_bits = {255 << 23};
650 const uint32_t f16max_bits = {(127 + 16) << 23};
651 const uint32_t denorm_magic_bits = {((127 - 15) + (23 - 10) + 1) << 23};
652 const uint32_t sign_mask = 0x80000000u;
653 __half_raw o;
654 o.x = static_cast<uint16_t>(0x0u);
655
656 const uint32_t sign = f_bits & sign_mask;
657 f_bits ^= sign;
658
659 // NOTE all the integer compares in this function can be safely
660 // compiled into signed compares since all operands are below
661 // 0x80000000. Important if you want fast straight SSE2 code
662 // (since there's no unsigned PCMPGTD).
663
664 if (f_bits >= f16max_bits) { // result is Inf or NaN (all exponent bits set)
665 o.x = (f_bits > f32infty_bits) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
666 } else { // (De)normalized number or zero
667 if (f_bits < (113 << 23)) { // resulting FP16 is subnormal or zero
668 // use a magic value to align our 10 mantissa bits at the bottom of
669 // the float. as long as FP addition is round-to-nearest-even this
670 // just works.
671 f_bits = Eigen::numext::bit_cast<uint32_t>(Eigen::numext::bit_cast<float>(f_bits) +
672 Eigen::numext::bit_cast<float>(denorm_magic_bits));
673
674 // and one integer subtract of the bias later, we have our final float!
675 o.x = static_cast<numext::uint16_t>(f_bits - denorm_magic_bits);
676 } else {
677 const uint32_t mant_odd = (f_bits >> 13) & 1; // resulting mantissa is odd
678
679 // update exponent, rounding bias part 1
680 // Equivalent to `f.u += ((unsigned int)(15 - 127) << 23) + 0xfff`, but
681 // without arithmetic overflow.
682 f_bits += 0xc8000fffU;
683 // rounding bias part 2
684 f_bits += mant_odd;
685 // take the bits!
686 o.x = static_cast<numext::uint16_t>(f_bits >> 13);
687 }
688 }
689
690 o.x |= static_cast<numext::uint16_t>(sign >> 16);
691 return o;
692#endif
693}
694
695EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) {
696#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
697 (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
698 return __half2float(h);
699#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16)
700 return static_cast<float>(h.x);
701#elif defined(EIGEN_HAS_FP16_C)
702#if EIGEN_COMP_MSVC
703 // MSVC does not have scalar instructions.
704 return _mm_cvtss_f32(_mm_cvtph_ps(_mm_set1_epi16(h.x)));
705#else
706 return _cvtsh_ss(h.x);
707#endif
708#else
709 const float magic = Eigen::numext::bit_cast<float>(static_cast<uint32_t>(113 << 23));
710 const uint32_t shifted_exp = 0x7c00 << 13; // exponent mask after shift
711 uint32_t o_bits = (h.x & 0x7fff) << 13; // exponent/mantissa bits
712 const uint32_t exp = shifted_exp & o_bits; // just the exponent
713 o_bits += (127 - 15) << 23; // exponent adjust
714
715 // handle exponent special cases
716 if (exp == shifted_exp) { // Inf/NaN?
717 o_bits += (128 - 16) << 23; // extra exp adjust
718 } else if (exp == 0) { // Zero/Denormal?
719 o_bits += 1 << 23; // extra exp adjust
720 // renormalize
721 o_bits = Eigen::numext::bit_cast<uint32_t>(Eigen::numext::bit_cast<float>(o_bits) - magic);
722 }
723
724 o_bits |= (h.x & 0x8000) << 16; // sign bit
725 return Eigen::numext::bit_cast<float>(o_bits);
726#endif
727}
728
729// --- standard functions ---
730
731EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isinf)(const half& a) {
732#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16)
733 return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) == 0x7c00;
734#else
735 return (a.x & 0x7fff) == 0x7c00;
736#endif
737}
738EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isnan)(const half& a) {
739#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \
740 (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
741 return __hisnan(a);
742#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16)
743 return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) > 0x7c00;
744#else
745 return (a.x & 0x7fff) > 0x7c00;
746#endif
747}
748EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isfinite)(const half& a) {
749#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16)
750 return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) < 0x7c00;
751#else
752 return (a.x & 0x7fff) < 0x7c00;
753#endif
754}
755
756EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) {
757#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
758 return half(vabsh_f16(a.x));
759#elif defined(EIGEN_HAS_BUILTIN_FLOAT16)
760 half result;
761 result.x =
762 numext::bit_cast<_Float16>(static_cast<numext::uint16_t>(numext::bit_cast<numext::uint16_t>(a.x) & 0x7FFF));
763 return result;
764#else
765 half result;
766 result.x = a.x & 0x7FFF;
767 return result;
768#endif
769}
770EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) {
771#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \
772 defined(EIGEN_HIP_DEVICE_COMPILE)
773 return half(hexp(a));
774#else
775 return half(::expf(float(a)));
776#endif
777}
778EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp2(const half& a) {
779#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \
780 defined(EIGEN_HIP_DEVICE_COMPILE)
781 return half(hexp2(a));
782#else
783 return half(::exp2f(float(a)));
784#endif
785}
786EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half expm1(const half& a) { return half(numext::expm1(float(a))); }
787EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) {
788#if (defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && \
789 EIGEN_CUDA_ARCH >= 530) || \
790 (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
791 return half(hlog(a));
792#else
793 return half(::logf(float(a)));
794#endif
795}
796EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) { return half(numext::log1p(float(a))); }
797EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) { return half(::log10f(float(a))); }
798EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log2(const half& a) {
799 return half(static_cast<float>(EIGEN_LOG2E) * ::logf(float(a)));
800}
801
802EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) {
803#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \
804 defined(EIGEN_HIP_DEVICE_COMPILE)
805 return half(hsqrt(a));
806#else
807 return half(::sqrtf(float(a)));
808#endif
809}
810EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) {
811 return half(::powf(float(a), float(b)));
812}
813EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atan2(const half& a, const half& b) {
814 return half(::atan2f(float(a), float(b)));
815}
816EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) { return half(::sinf(float(a))); }
817EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) { return half(::cosf(float(a))); }
818EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) { return half(::tanf(float(a))); }
819EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) { return half(::tanhf(float(a))); }
820EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half asin(const half& a) { return half(::asinf(float(a))); }
821EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half acos(const half& a) { return half(::acosf(float(a))); }
822EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atan(const half& a) { return half(::atanf(float(a))); }
823EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atanh(const half& a) { return half(::atanhf(float(a))); }
824EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) {
825#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \
826 defined(EIGEN_HIP_DEVICE_COMPILE)
827 return half(hfloor(a));
828#else
829 return half(::floorf(float(a)));
830#endif
831}
832EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) {
833#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \
834 defined(EIGEN_HIP_DEVICE_COMPILE)
835 return half(hceil(a));
836#else
837 return half(::ceilf(float(a)));
838#endif
839}
840EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half rint(const half& a) { return half(::rintf(float(a))); }
841EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half round(const half& a) { return half(::roundf(float(a))); }
842EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half trunc(const half& a) { return half(::truncf(float(a))); }
843EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half fmod(const half& a, const half& b) {
844 return half(::fmodf(float(a), float(b)));
845}
846
847EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half(min)(const half& a, const half& b) { return b < a ? b : a; }
848
849EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half(max)(const half& a, const half& b) { return a < b ? b : a; }
850
851EIGEN_DEVICE_FUNC inline half fma(const half& a, const half& b, const half& c) {
852#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
853 return half(vfmah_f16(c.x, a.x, b.x));
854#elif defined(EIGEN_VECTORIZE_AVX512FP16)
855 // Reduces to vfmadd213sh.
856 return half(_mm_cvtsh_h(_mm_fmadd_ph(_mm_set_sh(a.x), _mm_set_sh(b.x), _mm_set_sh(c.x))));
857#else
858 // Emulate FMA via float.
859 return half(numext::fma(static_cast<float>(a), static_cast<float>(b), static_cast<float>(c)));
860#endif
861}
862
863#ifndef EIGEN_NO_IO
864EIGEN_ALWAYS_INLINE std::ostream& operator<<(std::ostream& os, const half& v) {
865 os << static_cast<float>(v);
866 return os;
867}
868#endif
869
870} // end namespace half_impl
871
872// import Eigen::half_impl::half into Eigen namespace
873// using half_impl::half;
874
875namespace internal {
876
877template <>
878struct is_arithmetic<half> {
879 enum { value = true };
880};
881
882template <>
883struct random_impl<half> {
884 enum : int { MantissaBits = 10 };
885 using Impl = random_impl<float>;
886 static EIGEN_DEVICE_FUNC inline half run(const half& x, const half& y) {
887 float result = Impl::run(x, y, MantissaBits);
888 return half(result);
889 }
890 static EIGEN_DEVICE_FUNC inline half run() {
891 float result = Impl::run(MantissaBits);
892 return half(result);
893 }
894};
895
896} // end namespace internal
897
898template <>
899struct NumTraits<Eigen::half> : GenericNumTraits<Eigen::half> {
900 enum { IsSigned = true, IsInteger = false, IsComplex = false, RequireInitialization = false };
901
902 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half epsilon() {
903 return half_impl::raw_uint16_to_half(0x0800);
904 }
905 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half dummy_precision() {
906 return half_impl::raw_uint16_to_half(0x211f); // Eigen::half(1e-2f);
907 }
908 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half highest() {
909 return half_impl::raw_uint16_to_half(0x7bff);
910 }
911 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half lowest() {
912 return half_impl::raw_uint16_to_half(0xfbff);
913 }
914 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half infinity() {
915 return half_impl::raw_uint16_to_half(0x7c00);
916 }
917 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() {
918 return half_impl::raw_uint16_to_half(0x7e00);
919 }
920};
921
922} // end namespace Eigen
923
924#undef _EIGEN_MAYBE_CONSTEXPR
925
926namespace Eigen {
927namespace numext {
928
929#if defined(EIGEN_GPU_COMPILE_PHASE)
930
931template <>
932EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isnan)(const Eigen::half& h) {
933 return (half_impl::isnan)(h);
934}
935
936template <>
937EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isinf)(const Eigen::half& h) {
938 return (half_impl::isinf)(h);
939}
940
941template <>
942EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(const Eigen::half& h) {
943 return (half_impl::isfinite)(h);
944}
945
946#endif
947
948template <>
949EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bit_cast<Eigen::half, uint16_t>(const uint16_t& src) {
950 return Eigen::half(Eigen::half_impl::raw_uint16_to_half(src));
951}
952
953template <>
954EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast<uint16_t, Eigen::half>(const Eigen::half& src) {
955 return Eigen::half_impl::raw_half_as_uint16(src);
956}
957
958// Specialize multiply-add to match packet operations and reduce conversions to/from float.
959template<>
960EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half madd<Eigen::half>(const Eigen::half& x, const Eigen::half& y, const Eigen::half& z) {
961 return Eigen::half(static_cast<float>(x) * static_cast<float>(y) + static_cast<float>(z));
962}
963
964} // namespace numext
965} // namespace Eigen
966
967// Add the missing shfl* intrinsics.
968// The __shfl* functions are only valid on HIP or _CUDA_ARCH_ >= 300.
969// CUDA defines them for (__CUDA_ARCH__ >= 300 || !defined(__CUDA_ARCH__))
970//
971// HIP and CUDA prior to SDK 9.0 define
972// __shfl, __shfl_up, __shfl_down, __shfl_xor for int and float
973// CUDA since 9.0 deprecates those and instead defines
974// __shfl_sync, __shfl_up_sync, __shfl_down_sync, __shfl_xor_sync,
975// with native support for __half and __nv_bfloat16
976//
977// Note that the following are __device__ - only functions.
978#if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 300)) || defined(EIGEN_HIPCC)
979
980#if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 90000
981
982__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_sync(unsigned mask, Eigen::half var, int srcLane,
983 int width = warpSize) {
984 const __half h = var;
985 return static_cast<Eigen::half>(__shfl_sync(mask, h, srcLane, width));
986}
987
988__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up_sync(unsigned mask, Eigen::half var, unsigned int delta,
989 int width = warpSize) {
990 const __half h = var;
991 return static_cast<Eigen::half>(__shfl_up_sync(mask, h, delta, width));
992}
993
994__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down_sync(unsigned mask, Eigen::half var, unsigned int delta,
995 int width = warpSize) {
996 const __half h = var;
997 return static_cast<Eigen::half>(__shfl_down_sync(mask, h, delta, width));
998}
999
1000__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor_sync(unsigned mask, Eigen::half var, int laneMask,
1001 int width = warpSize) {
1002 const __half h = var;
1003 return static_cast<Eigen::half>(__shfl_xor_sync(mask, h, laneMask, width));
1004}
1005
1006#else // HIP or CUDA SDK < 9.0
1007
1008__device__ EIGEN_STRONG_INLINE Eigen::half __shfl(Eigen::half var, int srcLane, int width = warpSize) {
1009 const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var));
1010 return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl(ivar, srcLane, width)));
1011}
1012
1013__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up(Eigen::half var, unsigned int delta, int width = warpSize) {
1014 const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var));
1015 return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_up(ivar, delta, width)));
1016}
1017
1018__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down(Eigen::half var, unsigned int delta, int width = warpSize) {
1019 const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var));
1020 return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_down(ivar, delta, width)));
1021}
1022
1023__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width = warpSize) {
1024 const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var));
1025 return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_xor(ivar, laneMask, width)));
1026}
1027
1028#endif // HIP vs CUDA
1029#endif // __shfl*
1030
1031// ldg() has an overload for __half_raw, but we also need one for Eigen::half.
1032#if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 350)) || defined(EIGEN_HIPCC)
1033EIGEN_STRONG_INLINE __device__ Eigen::half __ldg(const Eigen::half* ptr) {
1034 return Eigen::half_impl::raw_uint16_to_half(__ldg(reinterpret_cast<const Eigen::numext::uint16_t*>(ptr)));
1035}
1036#endif // __ldg
1037
1038#if EIGEN_HAS_STD_HASH
1039namespace std {
1040template <>
1041struct hash<Eigen::half> {
1042 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const {
1043 return static_cast<std::size_t>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(a));
1044 }
1045};
1046} // end namespace std
1047#endif
1048
1049namespace Eigen {
1050namespace internal {
1051
1052template <>
1053struct cast_impl<float, half> {
1054 EIGEN_DEVICE_FUNC static inline half run(const float& a) {
1055#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
1056 (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
1057 return __float2half(a);
1058#else
1059 return half(a);
1060#endif
1061 }
1062};
1063
1064template <>
1065struct cast_impl<int, half> {
1066 EIGEN_DEVICE_FUNC static inline half run(const int& a) {
1067#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
1068 (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
1069 return __float2half(static_cast<float>(a));
1070#else
1071 return half(static_cast<float>(a));
1072#endif
1073 }
1074};
1075
1076template <>
1077struct cast_impl<half, float> {
1078 EIGEN_DEVICE_FUNC static inline float run(const half& a) {
1079#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
1080 (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
1081 return __half2float(a);
1082#else
1083 return static_cast<float>(a);
1084#endif
1085 }
1086};
1087
1088} // namespace internal
1089} // namespace Eigen
1090
1091#endif // EIGEN_HALF_H
Namespace containing all symbols from the Eigen library.
Definition B01_Experimental.dox:1
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_real_op< typename Derived::Scalar >, const Derived > real(const Eigen::ArrayBase< Derived > &x)
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sign_op< typename Derived::Scalar >, const Derived > sign(const Eigen::ArrayBase< Derived > &x)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:82
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition NumTraits.h:232