Eigen-unsupported  3.4.1 (git rev 28ded8800c26864e537852658428ab44c8399e87)
 
Loading...
Searching...
No Matches
TensorReduction.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5// Copyright (C) 2016 Mehdi Goli, Codeplay Software Ltd <eigen@codeplay.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
12#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
13
14// clang is incompatible with the CUDA syntax wrt making a kernel a class friend,
15// so we'll use a macro to make clang happy.
16#ifndef KERNEL_FRIEND
17#if defined(__clang__) && (defined(__CUDA__) || defined(__HIP__))
18#define KERNEL_FRIEND friend __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024
19#else
20#define KERNEL_FRIEND friend
21#endif
22#endif
23
24
25namespace Eigen {
26
27namespace internal {
28 template<typename Op, typename Dims, typename XprType,template <class> class MakePointer_ >
29 struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> >
30 : traits<XprType>
31{
32 typedef traits<XprType> XprTraits;
33 typedef typename XprTraits::Scalar Scalar;
34 typedef typename XprTraits::StorageKind StorageKind;
35 typedef typename XprTraits::Index Index;
36 typedef typename XprType::Nested Nested;
37 static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
38 static const int Layout = XprTraits::Layout;
39 typedef typename XprTraits::PointerType PointerType;
40
41 template <class T> struct MakePointer {
42 // Intermediate typedef to workaround MSVC issue.
43 typedef MakePointer_<T> MakePointerT;
44 typedef typename MakePointerT::Type Type;
45 };
46};
47
48template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
49struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense>
50{
51 typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type;
52};
53
54template<typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
55struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type>
56{
57 typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type;
58};
59
60
61template <typename OutputDims> struct DimInitializer {
62 template <typename InputDims, typename ReducedDims> EIGEN_DEVICE_FUNC
63 static void run(const InputDims& input_dims,
64 const array<bool, internal::array_size<InputDims>::value>& reduced,
65 OutputDims* output_dims, ReducedDims* reduced_dims) {
66 const int NumInputDims = internal::array_size<InputDims>::value;
67 int outputIndex = 0;
68 int reduceIndex = 0;
69 for (int i = 0; i < NumInputDims; ++i) {
70 if (reduced[i]) {
71 (*reduced_dims)[reduceIndex] = input_dims[i];
72 ++reduceIndex;
73 } else {
74 (*output_dims)[outputIndex] = input_dims[i];
75 ++outputIndex;
76 }
77 }
78 }
79};
80
81template <> struct DimInitializer<Sizes<> > {
82 template <typename InputDims, typename Index, size_t Rank> EIGEN_DEVICE_FUNC
83 static void run(const InputDims& input_dims, const array<bool, Rank>&,
84 Sizes<>*, array<Index, Rank>* reduced_dims) {
85 const int NumInputDims = internal::array_size<InputDims>::value;
86 for (int i = 0; i < NumInputDims; ++i) {
87 (*reduced_dims)[i] = input_dims[i];
88 }
89 }
90};
91
92
93template <typename ReducedDims, int NumTensorDims, int Layout>
94struct are_inner_most_dims {
95 static const bool value = false;
96};
97template <typename ReducedDims, int NumTensorDims, int Layout>
98struct preserve_inner_most_dims {
99 static const bool value = false;
100};
101
102#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
103template <typename ReducedDims, int NumTensorDims>
104struct are_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
105 static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
106 static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0);
107 static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1);
108 static const bool value = tmp1 & tmp2 & tmp3;
109};
110template <typename ReducedDims, int NumTensorDims>
111struct are_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
112 static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
113 static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value);
114 static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
115 static const bool value = tmp1 & tmp2 & tmp3;
116
117};
118template <typename ReducedDims, int NumTensorDims>
119struct preserve_inner_most_dims<ReducedDims, NumTensorDims, ColMajor>{
120 static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
121 static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0);
122 static const bool value = tmp1 & tmp2;
123
124};
125template <typename ReducedDims, int NumTensorDims>
126struct preserve_inner_most_dims<ReducedDims, NumTensorDims, RowMajor>{
127 static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
128 static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
129 static const bool value = tmp1 & tmp2;
130};
131#endif
132
133
134template <int DimIndex, typename Self, typename Op>
135struct GenericDimReducer {
136 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
137 EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
138 for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
139 const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
140 GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
141 }
142 }
143};
144template <typename Self, typename Op>
145struct GenericDimReducer<0, Self, Op> {
146 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) {
147 for (int j = 0; j < self.m_reducedDims[0]; ++j) {
148 const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
149 reducer.reduce(self.m_impl.coeff(input), accum);
150 }
151 }
152};
153template <typename Self, typename Op>
154struct GenericDimReducer<-1, Self, Op> {
155 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) {
156 reducer.reduce(self.m_impl.coeff(index), accum);
157 }
158};
159
160template <typename Self, typename Op, bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess),
161 bool UseTreeReduction = (!Self::ReducerTraits::IsStateful &&
162 !Self::ReducerTraits::IsExactlyAssociative &&
163 // GPU threads can quickly run out of stack space
164 // for moderately sized inputs.
165 !Self::RunningOnGPU
166 )>
167struct InnerMostDimReducer {
168 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
169 typename Self::CoeffReturnType accum = reducer.initialize();
170 for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
171 reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
172 }
173 return reducer.finalize(accum);
174 }
175};
176
177template <typename Self, typename Op>
178struct InnerMostDimReducer<Self, Op, true, false> {
179 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) {
180 const typename Self::Index packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size;
181 const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
182 typename Self::PacketReturnType paccum = reducer.template initializePacket<typename Self::PacketReturnType>();
183 for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
184 reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum);
185 }
186 typename Self::CoeffReturnType accum = reducer.initialize();
187 for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
188 reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
189 }
190 return reducer.finalizeBoth(accum, paccum);
191 }
192};
193
194#if !defined(EIGEN_HIPCC)
195static const int kLeafSize = 1024;
196
197template <typename Self, typename Op>
198struct InnerMostDimReducer<Self, Op, false, true> {
199 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType
200 reduce(const Self& self, typename Self::Index firstIndex,
201 typename Self::Index numValuesToReduce, Op& reducer) {
202 typename Self::CoeffReturnType accum = reducer.initialize();
203 if (numValuesToReduce > kLeafSize) {
204 const typename Self::Index half = numValuesToReduce / 2;
205 reducer.reduce(reduce(self, firstIndex, half, reducer), &accum);
206 reducer.reduce(
207 reduce(self, firstIndex + half, numValuesToReduce - half, reducer),
208 &accum);
209 } else {
210 for (typename Self::Index j = 0; j < numValuesToReduce; ++j) {
211 reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
212 }
213 }
214 return reducer.finalize(accum);
215 }
216};
217
218template <typename Self, typename Op>
219struct InnerMostDimReducer<Self, Op, true, true> {
220 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType
221 reduce(const Self& self, typename Self::Index firstIndex,
222 typename Self::Index numValuesToReduce, Op& reducer) {
223 const typename Self::Index packetSize =
224 internal::unpacket_traits<typename Self::PacketReturnType>::size;
225 typename Self::CoeffReturnType accum = reducer.initialize();
226 if (numValuesToReduce > packetSize * kLeafSize) {
227 // Make sure the split point is aligned on a packet boundary.
228 const typename Self::Index split =
229 packetSize *
230 divup(firstIndex + divup(numValuesToReduce, typename Self::Index(2)),
231 packetSize);
232 const typename Self::Index num_left =
233 numext::mini(split - firstIndex, numValuesToReduce);
234 reducer.reduce(reduce(self, firstIndex, num_left, reducer), &accum);
235 if (num_left < numValuesToReduce) {
236 reducer.reduce(
237 reduce(self, split, numValuesToReduce - num_left, reducer), &accum);
238 }
239 return reducer.finalize(accum);
240 } else {
241 const typename Self::Index UnrollSize =
242 (numValuesToReduce / (2*packetSize)) * 2*packetSize;
243 const typename Self::Index VectorizedSize =
244 (numValuesToReduce / packetSize) * packetSize;
245 typename Self::PacketReturnType paccum =
246 reducer.template initializePacket<typename Self::PacketReturnType>();
247 typename Self::PacketReturnType paccum2 =
248 reducer.template initializePacket<typename Self::PacketReturnType>();
249 for (typename Self::Index j = 0; j < UnrollSize; j += packetSize * 2) {
250 reducer.reducePacket(
251 self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum);
252 reducer.reducePacket(
253 self.m_impl.template packet<Unaligned>(firstIndex + j + packetSize),
254 &paccum2);
255 }
256 for (typename Self::Index j = UnrollSize; j < VectorizedSize; j+= packetSize) {
257 reducer.reducePacket(self.m_impl.template packet<Unaligned>(
258 firstIndex + j), &paccum);
259 }
260 reducer.reducePacket(paccum2, &paccum);
261 for (typename Self::Index j = VectorizedSize; j < numValuesToReduce;
262 ++j) {
263 reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
264 }
265 return reducer.finalizeBoth(accum, paccum);
266 }
267 }
268};
269#endif
270
271template <int DimIndex, typename Self, typename Op, bool vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
272struct InnerMostDimPreserver {
273 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
274 eigen_assert(false && "should never be called");
275 }
276};
277
278template <int DimIndex, typename Self, typename Op>
279struct InnerMostDimPreserver<DimIndex, Self, Op, true> {
280 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
281 EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
282 for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
283 const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
284 InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
285 }
286 }
287};
288
289template <typename Self, typename Op>
290struct InnerMostDimPreserver<0, Self, Op, true> {
291 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) {
292 for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) {
293 const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
294 reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum);
295 }
296 }
297};
298template <typename Self, typename Op>
299struct InnerMostDimPreserver<-1, Self, Op, true> {
300 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) {
301 eigen_assert(false && "should never be called");
302 }
303};
304
305// Default full reducer
306template <typename Self, typename Op, typename Device, bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
307struct FullReducer {
308 static const bool HasOptimizedImplementation = false;
309
310 static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::EvaluatorPointerType output) {
311 const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
312 *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
313 }
314};
315
316
317#ifdef EIGEN_USE_THREADS
318// Multithreaded full reducers
319template <typename Self, typename Op,
320 bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
321struct FullReducerShard {
322 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex,
323 typename Self::Index numValuesToReduce, Op& reducer,
324 typename Self::CoeffReturnType* output) {
325 *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
326 self, firstIndex, numValuesToReduce, reducer);
327 }
328};
329
330// Multithreaded full reducer
331template <typename Self, typename Op, bool Vectorizable>
332struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
333 static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful;
334 static const Index PacketSize =
335 unpacket_traits<typename Self::PacketReturnType>::size;
336
337 // launch one reducer per thread and accumulate the result.
338 static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device,
339 typename Self::CoeffReturnType* output) {
340 typedef typename Self::Index Index;
341 const Index num_coeffs = array_prod(self.m_impl.dimensions());
342 if (num_coeffs == 0) {
343 *output = reducer.finalize(reducer.initialize());
344 return;
345 }
346 const TensorOpCost cost =
347 self.m_impl.costPerCoeff(Vectorizable) +
348 TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
349 PacketSize);
350 const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
351 num_coeffs, cost, device.numThreads());
352 if (num_threads == 1) {
353 *output =
354 InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
355 return;
356 }
357 const Index blocksize =
358 std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
359 const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
360 eigen_assert(num_coeffs >= numblocks * blocksize);
361
362 Barrier barrier(internal::convert_index<unsigned int>(numblocks));
363 MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
364 for (Index i = 0; i < numblocks; ++i) {
365 device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
366 self, i * blocksize, blocksize, reducer,
367 &shards[i]);
368 }
369 typename Self::CoeffReturnType finalShard;
370 if (numblocks * blocksize < num_coeffs) {
371 finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
372 self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
373 reducer);
374 } else {
375 finalShard = reducer.initialize();
376 }
377 barrier.Wait();
378
379 for (Index i = 0; i < numblocks; ++i) {
380 reducer.reduce(shards[i], &finalShard);
381 }
382 *output = reducer.finalize(finalShard);
383 }
384};
385
386#endif
387
388
389// Default inner reducer
390template <typename Self, typename Op, typename Device>
391struct InnerReducer {
392 static const bool HasOptimizedImplementation = false;
393
394 EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
395 eigen_assert(false && "Not implemented");
396 return true;
397 }
398};
399
400// Default outer reducer
401template <typename Self, typename Op, typename Device>
402struct OuterReducer {
403 static const bool HasOptimizedImplementation = false;
404
405 EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
406 eigen_assert(false && "Not implemented");
407 return true;
408 }
409};
410
411#ifdef EIGEN_USE_SYCL
412// Default Generic reducer
413template <typename Self, typename Op, typename Device>
414struct GenericReducer {
415 static const bool HasOptimizedImplementation = false;
416
417 EIGEN_DEVICE_FUNC static bool run(const Self&, Op&, const Device&, typename Self::CoeffReturnType*, typename Self::Index, typename Self::Index) {
418 eigen_assert(false && "Not implemented");
419 return true;
420 }
421};
422#endif
423
424#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
425template <int B, int N, typename S, typename R, typename I_>
426__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernel(R, const S, I_, typename S::CoeffReturnType*, unsigned int*);
427
428
429#if defined(EIGEN_HAS_GPU_FP16)
430template <typename S, typename R, typename I_>
431__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitFullReduxKernelHalfFloat(R, const S, I_, internal::packet_traits<half>::type*);
432template <int B, int N, typename S, typename R, typename I_>
433__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernelHalfFloat(R, const S, I_, half*, internal::packet_traits<half>::type*);
434template <int NPT, typename S, typename R, typename I_>
435__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernelHalfFloat(R, const S, I_, I_, half*);
436
437#endif
438
439template <int NPT, typename S, typename R, typename I_>
440__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
441
442template <int NPT, typename S, typename R, typename I_>
443__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void OuterReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
444#endif
445
454template <typename Op, typename CoeffReturnType>
456#if defined(EIGEN_USE_SYCL)
457 typedef typename remove_const<decltype(std::declval<Op>().initialize())>::type type;
458#else
459 typedef typename remove_const<CoeffReturnType>::type type;
460#endif
461};
462
463} // end namespace internal
464
471template <typename Op, typename Dims, typename XprType, template <class> class MakePointer_>
472class TensorReductionOp : public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> {
473 public:
474 typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar;
475 typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
476 typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
477 typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested;
478 typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind;
479 typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index;
480
481 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
482 TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims)
483 { }
484 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
485 TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer)
486 { }
487
488 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
489 const XprType& expression() const { return m_expr; }
490 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
491 const Dims& dims() const { return m_dims; }
492 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
493 const Op& reducer() const { return m_reducer; }
494
495 protected:
496 typename XprType::Nested m_expr;
497 const Dims m_dims;
498 const Op m_reducer;
499};
500
501template<typename ArgType, typename Device>
502struct TensorReductionEvaluatorBase;
503
504// Eval as rvalue
505template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
506struct TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
507{
508 typedef internal::reducer_traits<Op, Device> ReducerTraits;
509 typedef Dims ReducedDims;
511 typedef typename XprType::Index Index;
512 typedef ArgType ChildType;
513 typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
514 static const int NumInputDims = internal::array_size<InputDimensions>::value;
515 static const int NumReducedDims = internal::array_size<Dims>::value;
516 static const int NumOutputDims = NumInputDims - NumReducedDims;
517 typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type Dimensions;
518 typedef typename XprType::Scalar Scalar;
519 typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self;
520 static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess;
521 typedef typename internal::ReductionReturnType<Op, typename XprType::CoeffReturnType>::type CoeffReturnType;
522 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
523 static const Index PacketSize = PacketType<CoeffReturnType, Device>::size;
524
525 typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType;
526 typedef StorageMemory<CoeffReturnType, Device> Storage;
527 typedef typename Storage::Type EvaluatorPointerType;
528
529 // Subset of strides of the input tensor for the non-reduced dimensions.
530 // Indexed by output dimensions.
531 static const int NumPreservedStrides = max_n_1<NumOutputDims>::size;
532
533 // For full reductions
534#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
535 static constexpr bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value;
536 static constexpr bool RunningOnSycl = false;
537#elif defined(EIGEN_USE_SYCL)
538static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value;
539static const bool RunningOnGPU = false;
540#else
541 static constexpr bool RunningOnGPU = false;
542 static constexpr bool RunningOnSycl = false;
543#endif
544
545 enum {
546 IsAligned = false,
547 PacketAccess = Self::InputPacketAccess && ReducerTraits::PacketAccess,
548 BlockAccess = false,
549 PreferBlockAccess = true,
550 Layout = TensorEvaluator<ArgType, Device>::Layout,
551 CoordAccess = false, // to be implemented
552 RawAccess = false
553 };
554
555 typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
556
557 //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
558 typedef internal::TensorBlockNotImplemented TensorBlock;
559 //===--------------------------------------------------------------------===//
560
561 static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value;
562 static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value;
563 static const bool RunningFullReduction = (NumOutputDims==0);
564
565 EIGEN_STRONG_INLINE TensorReductionEvaluatorBase(const XprType& op, const Device& device)
566 : m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device)
567 {
568 EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
569 EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)),
570 YOU_MADE_A_PROGRAMMING_MISTAKE);
571
572 // Build the bitmap indicating if an input dimension is reduced or not.
573 for (int i = 0; i < NumInputDims; ++i) {
574 m_reduced[i] = false;
575 }
576 for (int i = 0; i < NumReducedDims; ++i) {
577 eigen_assert(op.dims()[i] >= 0);
578 eigen_assert(op.dims()[i] < NumInputDims);
579 m_reduced[op.dims()[i]] = true;
580 }
581
582 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
583 internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims);
584
585 // Precompute output strides.
586 if (NumOutputDims > 0) {
587 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
588 m_outputStrides[0] = 1;
589 for (int i = 1; i < NumOutputDims; ++i) {
590 m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
591 m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
592 }
593 } else {
594 m_outputStrides[static_cast<size_t>(NumOutputDims - 1)] = 1;
595 for (int i = NumOutputDims - 2; i >= 0; --i) {
596 m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
597 m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
598 }
599 }
600 }
601
602 // Precompute input strides.
603 if (NumInputDims > 0) {
604 array<Index, NumInputDims> input_strides;
605 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
606 input_strides[0] = 1;
607 for (int i = 1; i < NumInputDims; ++i) {
608 input_strides[i] = input_strides[i-1] * input_dims[i-1];
609 }
610 } else {
611 input_strides.back() = 1;
612 for (int i = NumInputDims - 2; i >= 0; --i) {
613 input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
614 }
615 }
616
617 int outputIndex = 0;
618 int reduceIndex = 0;
619 for (int i = 0; i < NumInputDims; ++i) {
620 if (m_reduced[i]) {
621 m_reducedStrides[reduceIndex] = input_strides[i];
622 ++reduceIndex;
623 } else {
624 m_preservedStrides[outputIndex] = input_strides[i];
625 m_output_to_input_dim_map[outputIndex] = i;
626 ++outputIndex;
627 }
628 }
629 }
630
631 // Special case for full reductions
632 if (NumOutputDims == 0) {
633 m_preservedStrides[0] = internal::array_prod(input_dims);
634 }
635
636 m_numValuesToReduce =
637 NumOutputDims == 0
638 ? internal::array_prod(input_dims)
639 : (static_cast<int>(Layout) == static_cast<int>(ColMajor))
640 ? m_preservedStrides[0]
641 : m_preservedStrides[NumOutputDims - 1];
642 }
643
644 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
645
646 EIGEN_STRONG_INLINE
647 bool evalSubExprsIfNeededCommon(EvaluatorPointerType data) {
648 // Use the FullReducer if possible.
649 if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction &&
650 internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
651 ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
652 !RunningOnGPU))) {
653 bool need_assign = false;
654 if (!data) {
655 m_result = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType))));
656 data = m_result;
657 need_assign = true;
658 }
659 Op reducer(m_reducer);
660 internal::FullReducer<Self, Op, Device>::run(*this, reducer, m_device, data);
661 return need_assign;
662 }
663
664 // Attempt to use an optimized reduction.
665 else if ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) || (RunningOnSycl)) {
666 bool reducing_inner_dims = true;
667 for (int i = 0; i < NumReducedDims; ++i) {
668 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
669 reducing_inner_dims &= m_reduced[i];
670 } else {
671 reducing_inner_dims &= m_reduced[NumInputDims - 1 - i];
672 }
673 }
674 if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation &&
675 (reducing_inner_dims || ReducingInnerMostDims)) {
676 const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
677 const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
678 if (!data) {
679 if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) || (RunningOnSycl)) {
680 data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
681 m_result = data;
682 }
683 else {
684 return true;
685 }
686 }
687 Op reducer(m_reducer);
688 // For SYCL this if always return false
689 if (internal::InnerReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
690 if (m_result) {
691 m_device.deallocate_temp(m_result);
692 m_result = NULL;
693 }
694 return true;
695 } else {
696 return (m_result != NULL);
697 }
698 }
699
700 bool preserving_inner_dims = true;
701 for (int i = 0; i < NumReducedDims; ++i) {
702 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
703 preserving_inner_dims &= m_reduced[NumInputDims - 1 - i];
704 } else {
705 preserving_inner_dims &= m_reduced[i];
706 }
707 }
708 if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation &&
709 preserving_inner_dims) {
710 const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
711 const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
712 if (!data) {
713 if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) || (RunningOnSycl)) {
714 data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
715 m_result = data;
716 }
717 else {
718 return true;
719 }
720 }
721 Op reducer(m_reducer);
722 // For SYCL this if always return false
723 if (internal::OuterReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
724 if (m_result) {
725 m_device.deallocate_temp(m_result);
726 m_result = NULL;
727 }
728 return true;
729 } else {
730 return (m_result != NULL);
731 }
732 }
733 #if defined(EIGEN_USE_SYCL)
734 // If there is no Optimised version for SYCL, the reduction expression
735 // must break into two subexpression and use the SYCL generic Reducer on the device.
736 if(RunningOnSycl) {
737 const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
738 const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
739 if (!data) {
740 data = static_cast<EvaluatorPointerType>(m_device.get((CoeffReturnType*)m_device.allocate_temp(sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
741 m_result = data;
742 }
743 Op reducer(m_reducer);
744 internal::GenericReducer<Self, Op, Device>::run(*this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
745 return (m_result != NULL);
746 }
747 #endif
748 }
749 return true;
750 }
751
752#ifdef EIGEN_USE_THREADS
753 template <typename EvalSubExprsCallback>
754 EIGEN_STRONG_INLINE
755 void
756 evalSubExprsIfNeededAsync(EvaluatorPointerType data,
757 EvalSubExprsCallback done) {
758 m_impl.evalSubExprsIfNeededAsync(NULL, [this, data, done](bool) {
759 done(evalSubExprsIfNeededCommon(data));
760 });
761 }
762#endif
763
764 EIGEN_STRONG_INLINE
765 bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
766 m_impl.evalSubExprsIfNeeded(NULL);
767 return evalSubExprsIfNeededCommon(data);
768 }
769
770 EIGEN_STRONG_INLINE void cleanup() {
771 m_impl.cleanup();
772 if (m_result) {
773 m_device.deallocate_temp(m_result);
774 m_result = NULL;
775 }
776 }
777
778 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
779 {
780 if (( RunningFullReduction || RunningOnGPU) && m_result ) {
781 return *(m_result + index);
782 }
783 Op reducer(m_reducer);
784 if (ReducingInnerMostDims || RunningFullReduction) {
785 const Index num_values_to_reduce =
786 (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
787 return internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstInput(index),
788 num_values_to_reduce, reducer);
789 } else {
790 typename Self::CoeffReturnType accum = reducer.initialize();
791 internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*this, firstInput(index), reducer, &accum);
792 return reducer.finalize(accum);
793 }
794 }
795
796 // TODO(bsteiner): provide a more efficient implementation.
797 template<int LoadMode>
798 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
799 {
800 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
801 eigen_assert(index + PacketSize - 1 < Index(internal::array_prod(dimensions())));
802
803 if (RunningOnGPU && m_result) {
804 return internal::pload<PacketReturnType>(m_result + index);
805 }
806
807 EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
808 if (ReducingInnerMostDims) {
809 const Index num_values_to_reduce =
810 (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
811 const Index firstIndex = firstInput(index);
812 for (Index i = 0; i < PacketSize; ++i) {
813 Op reducer(m_reducer);
814 values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*this, firstIndex + i * num_values_to_reduce,
815 num_values_to_reduce, reducer);
816 }
817 } else if (PreservingInnerMostDims) {
818 const Index firstIndex = firstInput(index);
819 const int innermost_dim = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? 0 : NumOutputDims - 1;
820 // TBD: extend this the the n innermost dimensions that we preserve.
821 if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) {
822 Op reducer(m_reducer);
823 typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>();
824 internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*this, firstIndex, reducer, &accum);
825 return reducer.finalizePacket(accum);
826 } else {
827 for (int i = 0; i < PacketSize; ++i) {
828 values[i] = coeff(index + i);
829 }
830 }
831 } else {
832 for (int i = 0; i < PacketSize; ++i) {
833 values[i] = coeff(index + i);
834 }
835 }
836 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
837 return rslt;
838 }
839
840 // Must be called after evalSubExprsIfNeeded().
841 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
842 if (RunningFullReduction && m_result) {
843 return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
844 } else {
845 const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
846 const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost;
847 return m_impl.costPerCoeff(vectorized) * num_values_to_reduce +
848 TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
849 }
850 }
851
852 EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_result; }
853 EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
854 EIGEN_DEVICE_FUNC const Device& device() const { return m_device; }
855#ifdef EIGEN_USE_SYCL
856 // binding placeholder accessors to a command group handler for SYCL
857 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
858 m_impl.bind(cgh);
859 m_result.bind(cgh);
860 }
861#endif
862
863 private:
864 template <int, typename, typename> friend struct internal::GenericDimReducer;
865 template <typename, typename, bool, bool> friend struct internal::InnerMostDimReducer;
866 template <int, typename, typename, bool> friend struct internal::InnerMostDimPreserver;
867 template <typename S, typename O, typename D, bool V> friend struct internal::FullReducer;
868#ifdef EIGEN_USE_THREADS
869 template <typename S, typename O, bool V> friend struct internal::FullReducerShard;
870#endif
871#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
872 template <int B, int N, typename S, typename R, typename I_> KERNEL_FRIEND void internal::FullReductionKernel(R, const S, I_, typename S::CoeffReturnType*, unsigned int*);
873#if defined(EIGEN_HAS_GPU_FP16)
874 template <typename S, typename R, typename I_> KERNEL_FRIEND void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I_, internal::packet_traits<Eigen::half>::type*);
875 template <int B, int N, typename S, typename R, typename I_> KERNEL_FRIEND void internal::FullReductionKernelHalfFloat(R, const S, I_, half*, internal::packet_traits<Eigen::half>::type*);
876 template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::InnerReductionKernelHalfFloat(R, const S, I_, I_, half*);
877#endif
878 template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::InnerReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
879
880 template <int NPT, typename S, typename R, typename I_> KERNEL_FRIEND void internal::OuterReductionKernel(R, const S, I_, I_, typename S::CoeffReturnType*);
881#endif
882
883#if defined(EIGEN_USE_SYCL)
884 template < typename Evaluator_, typename Op__> friend class TensorSycl::internal::GenericNondeterministicReducer;
885 // SYCL need the Generic reducer for the case the recution algorithm is neither inner, outer, and full reducer
886 template <typename, typename, typename> friend struct internal::GenericReducer;
887#endif
888
889
890 template <typename S, typename O, typename D> friend struct internal::InnerReducer;
891
892 struct BlockIteratorState {
893 Index input_dim;
894 Index output_size;
895 Index output_count;
896 };
897
898 // Returns the Index in the input tensor of the first value that needs to be
899 // used to compute the reduction at output index "index".
900 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
901 if (ReducingInnerMostDims) {
902 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
903 return index * m_preservedStrides[0];
904 } else {
905 return index * m_preservedStrides[NumPreservedStrides - 1];
906 }
907 }
908 // TBD: optimize the case where we preserve the innermost dimensions.
909 Index startInput = 0;
910 if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
911 for (int i = NumOutputDims - 1; i > 0; --i) {
912 // This is index_i in the output tensor.
913 const Index idx = index / m_outputStrides[i];
914 startInput += idx * m_preservedStrides[i];
915 index -= idx * m_outputStrides[i];
916 }
917 if (PreservingInnerMostDims) {
918 eigen_assert(m_preservedStrides[0] == 1);
919 startInput += index;
920 } else {
921 startInput += index * m_preservedStrides[0];
922 }
923 } else {
924 for (int i = 0; i < NumOutputDims - 1; ++i) {
925 // This is index_i in the output tensor.
926 const Index idx = index / m_outputStrides[i];
927 startInput += idx * m_preservedStrides[i];
928 index -= idx * m_outputStrides[i];
929 }
930 if (PreservingInnerMostDims) {
931 eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1);
932 startInput += index;
933 } else {
934 startInput += index * m_preservedStrides[NumPreservedStrides - 1];
935 }
936 }
937 return startInput;
938 }
939
940 // Bitmap indicating if an input dimension is reduced or not.
941 array<bool, NumInputDims> m_reduced;
942 // Dimensions of the output of the operation.
943 Dimensions m_dimensions;
944 // Precomputed strides for the output tensor.
945 array<Index, NumOutputDims> m_outputStrides;
946 array<internal::TensorIntDivisor<Index>, NumOutputDims> m_fastOutputStrides;
947 array<Index, NumPreservedStrides> m_preservedStrides;
948 // Map from output to input dimension index.
949 array<Index, NumOutputDims> m_output_to_input_dim_map;
950 // How many values go into each reduction
951 Index m_numValuesToReduce;
952
953 // Subset of strides of the input tensor for the reduced dimensions.
954 // Indexed by reduced dimensions.
955 array<Index, NumReducedDims> m_reducedStrides;
956 // Size of the input dimensions that are reduced.
957 // Indexed by reduced dimensions.
958 array<Index, NumReducedDims> m_reducedDims;
959
960 // Evaluator for the input expression.
961 TensorEvaluator<ArgType, Device> m_impl;
962
963 // Operation to apply for computing the reduction.
964 Op m_reducer;
965
966 EvaluatorPointerType m_result;
967
968 const Device EIGEN_DEVICE_REF m_device;
969};
970
971template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_, typename Device>
972struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
973: public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> {
974 typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Base;
975 EIGEN_STRONG_INLINE TensorEvaluator(const typename Base::XprType& op, const Device& device) : Base(op, device){}
976};
977
978
979template<typename Op, typename Dims, typename ArgType, template <class> class MakePointer_>
980struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice>
981: public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> {
982
983 typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> Base;
984 EIGEN_STRONG_INLINE TensorEvaluator(const typename Base::XprType& op, const Eigen::SyclDevice& device) : Base(op, device){}
985 // The coeff function in the base the recursive method which is not an standard layout and cannot be used in the SYCL kernel
986 //Therefore the coeff function should be overridden by for SYCL kernel
987 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Base::CoeffReturnType coeff(typename Base::Index index) const {
988 return *(this->data() + index);
989 }
990 // The packet function in the base the recursive method which is not an standard layout and cannot be used in the SYCL kernel
991 //Therefore the packet function should be overridden by for SYCL kernel
992 template<int LoadMode>
993 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Base::PacketReturnType packet(typename Base::Index index) const {
994 return internal::pload<typename Base::PacketReturnType>(this->data() + index);
995 }
996};
997
998} // end namespace Eigen
999
1000#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
The tensor base class.
Definition TensorForwardDeclarations.h:56
Tensor reduction class.
Definition TensorReduction.h:472
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
Definition TensorReduction.h:455