11#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
12#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
17#if defined(__clang__) && (defined(__CUDA__) || defined(__HIP__))
18#define KERNEL_FRIEND friend __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024
20#define KERNEL_FRIEND friend
28 template<
typename Op,
typename Dims,
typename XprType,
template <
class>
class MakePointer_ >
29 struct traits<TensorReductionOp<Op, Dims, XprType, MakePointer_> >
32 typedef traits<XprType> XprTraits;
33 typedef typename XprTraits::Scalar Scalar;
34 typedef typename XprTraits::StorageKind StorageKind;
35 typedef typename XprTraits::Index
Index;
36 typedef typename XprType::Nested Nested;
37 static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value;
38 static const int Layout = XprTraits::Layout;
39 typedef typename XprTraits::PointerType PointerType;
41 template <
class T>
struct MakePointer {
43 typedef MakePointer_<T> MakePointerT;
44 typedef typename MakePointerT::Type Type;
48template<
typename Op,
typename Dims,
typename XprType,
template <
class>
class MakePointer_>
49struct eval<TensorReductionOp<Op, Dims, XprType, MakePointer_>, Eigen::Dense>
51 typedef const TensorReductionOp<Op, Dims, XprType, MakePointer_>& type;
54template<
typename Op,
typename Dims,
typename XprType,
template <
class>
class MakePointer_>
55struct nested<TensorReductionOp<Op, Dims, XprType, MakePointer_>, 1, typename eval<TensorReductionOp<Op, Dims, XprType, MakePointer_> >::type>
57 typedef TensorReductionOp<Op, Dims, XprType, MakePointer_> type;
61template <
typename OutputDims>
struct DimInitializer {
62 template <
typename InputDims,
typename ReducedDims> EIGEN_DEVICE_FUNC
63 static void run(
const InputDims& input_dims,
64 const array<
bool, internal::array_size<InputDims>::value>& reduced,
65 OutputDims* output_dims, ReducedDims* reduced_dims) {
66 const int NumInputDims = internal::array_size<InputDims>::value;
69 for (
int i = 0; i < NumInputDims; ++i) {
71 (*reduced_dims)[reduceIndex] = input_dims[i];
74 (*output_dims)[outputIndex] = input_dims[i];
81template <>
struct DimInitializer<Sizes<> > {
82 template <
typename InputDims,
typename Index,
size_t Rank> EIGEN_DEVICE_FUNC
83 static void run(
const InputDims& input_dims,
const array<bool, Rank>&,
84 Sizes<>*, array<Index, Rank>* reduced_dims) {
85 const int NumInputDims = internal::array_size<InputDims>::value;
86 for (
int i = 0; i < NumInputDims; ++i) {
87 (*reduced_dims)[i] = input_dims[i];
93template <
typename ReducedDims,
int NumTensorDims,
int Layout>
94struct are_inner_most_dims {
95 static const bool value =
false;
97template <
typename ReducedDims,
int NumTensorDims,
int Layout>
98struct preserve_inner_most_dims {
99 static const bool value =
false;
102#if EIGEN_HAS_CONSTEXPR && EIGEN_HAS_VARIADIC_TEMPLATES
103template <
typename ReducedDims,
int NumTensorDims>
104struct are_inner_most_dims<ReducedDims, NumTensorDims,
ColMajor>{
105 static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
106 static const bool tmp2 = index_statically_eq<ReducedDims>(0, 0);
107 static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value-1, array_size<ReducedDims>::value-1);
108 static const bool value = tmp1 & tmp2 & tmp3;
110template <
typename ReducedDims,
int NumTensorDims>
111struct are_inner_most_dims<ReducedDims, NumTensorDims,
RowMajor>{
112 static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
113 static const bool tmp2 = index_statically_eq<ReducedDims>(0, NumTensorDims - array_size<ReducedDims>::value);
114 static const bool tmp3 = index_statically_eq<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
115 static const bool value = tmp1 & tmp2 & tmp3;
118template <
typename ReducedDims,
int NumTensorDims>
119struct preserve_inner_most_dims<ReducedDims, NumTensorDims,
ColMajor>{
120 static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
121 static const bool tmp2 = index_statically_gt<ReducedDims>(0, 0);
122 static const bool value = tmp1 & tmp2;
125template <
typename ReducedDims,
int NumTensorDims>
126struct preserve_inner_most_dims<ReducedDims, NumTensorDims,
RowMajor>{
127 static const bool tmp1 = indices_statically_known_to_increase<ReducedDims>();
128 static const bool tmp2 = index_statically_lt<ReducedDims>(array_size<ReducedDims>::value - 1, NumTensorDims - 1);
129 static const bool value = tmp1 & tmp2;
134template <
int DimIndex,
typename Self,
typename Op>
135struct GenericDimReducer {
136 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void reduce(
const Self& self,
typename Self::Index firstIndex, Op& reducer,
typename Self::CoeffReturnType* accum) {
137 EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
138 for (
int j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
139 const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
140 GenericDimReducer<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
144template <
typename Self,
typename Op>
145struct GenericDimReducer<0, Self, Op> {
146 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void reduce(
const Self& self,
typename Self::Index firstIndex, Op& reducer,
typename Self::CoeffReturnType* accum) {
147 for (
int j = 0; j < self.m_reducedDims[0]; ++j) {
148 const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
149 reducer.reduce(self.m_impl.coeff(input), accum);
153template <
typename Self,
typename Op>
154struct GenericDimReducer<-1, Self, Op> {
155 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void reduce(
const Self& self,
typename Self::Index index, Op& reducer,
typename Self::CoeffReturnType* accum) {
156 reducer.reduce(self.m_impl.coeff(index), accum);
160template <
typename Self,
typename Op,
bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess),
161 bool UseTreeReduction = (!Self::ReducerTraits::IsStateful &&
162 !Self::ReducerTraits::IsExactlyAssociative &&
167struct InnerMostDimReducer {
168 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename Self::CoeffReturnType reduce(
const Self& self,
typename Self::Index firstIndex,
typename Self::Index numValuesToReduce, Op& reducer) {
169 typename Self::CoeffReturnType accum = reducer.initialize();
170 for (
typename Self::Index j = 0; j < numValuesToReduce; ++j) {
171 reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
173 return reducer.finalize(accum);
177template <
typename Self,
typename Op>
178struct InnerMostDimReducer<Self, Op, true, false> {
179 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename Self::CoeffReturnType reduce(
const Self& self,
typename Self::Index firstIndex,
typename Self::Index numValuesToReduce, Op& reducer) {
180 const typename Self::Index packetSize = internal::unpacket_traits<typename Self::PacketReturnType>::size;
181 const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize;
182 typename Self::PacketReturnType paccum = reducer.template initializePacket<typename Self::PacketReturnType>();
183 for (
typename Self::Index j = 0; j < VectorizedSize; j += packetSize) {
184 reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum);
186 typename Self::CoeffReturnType accum = reducer.initialize();
187 for (
typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) {
188 reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
190 return reducer.finalizeBoth(accum, paccum);
194#if !defined(EIGEN_HIPCC)
195static const int kLeafSize = 1024;
197template <
typename Self,
typename Op>
198struct InnerMostDimReducer<Self, Op, false, true> {
199 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename Self::CoeffReturnType
200 reduce(
const Self& self,
typename Self::Index firstIndex,
201 typename Self::Index numValuesToReduce, Op& reducer) {
202 typename Self::CoeffReturnType accum = reducer.initialize();
203 if (numValuesToReduce > kLeafSize) {
204 const typename Self::Index half = numValuesToReduce / 2;
205 reducer.reduce(reduce(self, firstIndex, half, reducer), &accum);
207 reduce(self, firstIndex + half, numValuesToReduce - half, reducer),
210 for (
typename Self::Index j = 0; j < numValuesToReduce; ++j) {
211 reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
214 return reducer.finalize(accum);
218template <
typename Self,
typename Op>
219struct InnerMostDimReducer<Self, Op, true, true> {
220 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename Self::CoeffReturnType
221 reduce(
const Self& self,
typename Self::Index firstIndex,
222 typename Self::Index numValuesToReduce, Op& reducer) {
223 const typename Self::Index packetSize =
224 internal::unpacket_traits<typename Self::PacketReturnType>::size;
225 typename Self::CoeffReturnType accum = reducer.initialize();
226 if (numValuesToReduce > packetSize * kLeafSize) {
228 const typename Self::Index split =
230 divup(firstIndex + divup(numValuesToReduce,
typename Self::Index(2)),
232 const typename Self::Index num_left =
233 numext::mini(split - firstIndex, numValuesToReduce);
234 reducer.reduce(reduce(self, firstIndex, num_left, reducer), &accum);
235 if (num_left < numValuesToReduce) {
237 reduce(self, split, numValuesToReduce - num_left, reducer), &accum);
239 return reducer.finalize(accum);
241 const typename Self::Index UnrollSize =
242 (numValuesToReduce / (2*packetSize)) * 2*packetSize;
243 const typename Self::Index VectorizedSize =
244 (numValuesToReduce / packetSize) * packetSize;
245 typename Self::PacketReturnType paccum =
246 reducer.template initializePacket<typename Self::PacketReturnType>();
247 typename Self::PacketReturnType paccum2 =
248 reducer.template initializePacket<typename Self::PacketReturnType>();
249 for (
typename Self::Index j = 0; j < UnrollSize; j += packetSize * 2) {
250 reducer.reducePacket(
251 self.m_impl.template packet<Unaligned>(firstIndex + j), &paccum);
252 reducer.reducePacket(
253 self.m_impl.template packet<Unaligned>(firstIndex + j + packetSize),
256 for (
typename Self::Index j = UnrollSize; j < VectorizedSize; j+= packetSize) {
257 reducer.reducePacket(self.m_impl.template packet<Unaligned>(
258 firstIndex + j), &paccum);
260 reducer.reducePacket(paccum2, &paccum);
261 for (
typename Self::Index j = VectorizedSize; j < numValuesToReduce;
263 reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum);
265 return reducer.finalizeBoth(accum, paccum);
271template <
int DimIndex,
typename Self,
typename Op,
bool vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
272struct InnerMostDimPreserver {
273 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void reduce(
const Self&,
typename Self::Index, Op&,
typename Self::PacketReturnType*) {
274 eigen_assert(
false &&
"should never be called");
278template <
int DimIndex,
typename Self,
typename Op>
279struct InnerMostDimPreserver<DimIndex, Self, Op, true> {
280 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void reduce(
const Self& self,
typename Self::Index firstIndex, Op& reducer,
typename Self::PacketReturnType* accum) {
281 EIGEN_STATIC_ASSERT((DimIndex > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
282 for (
typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) {
283 const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex];
284 InnerMostDimPreserver<DimIndex-1, Self, Op>::reduce(self, input, reducer, accum);
289template <
typename Self,
typename Op>
290struct InnerMostDimPreserver<0, Self, Op, true> {
291 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void reduce(
const Self& self,
typename Self::Index firstIndex, Op& reducer,
typename Self::PacketReturnType* accum) {
292 for (
typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) {
293 const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0];
294 reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum);
298template <
typename Self,
typename Op>
299struct InnerMostDimPreserver<-1, Self, Op, true> {
300 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void reduce(
const Self&,
typename Self::Index, Op&,
typename Self::PacketReturnType*) {
301 eigen_assert(
false &&
"should never be called");
306template <
typename Self,
typename Op,
typename Device,
bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
308 static const bool HasOptimizedImplementation =
false;
310 static EIGEN_DEVICE_FUNC
void run(
const Self& self, Op& reducer,
const Device&,
typename Self::EvaluatorPointerType output) {
311 const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
312 *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
317#ifdef EIGEN_USE_THREADS
319template <
typename Self,
typename Op,
320 bool Vectorizable = (Self::InputPacketAccess && Self::ReducerTraits::PacketAccess)>
321struct FullReducerShard {
322 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void run(
const Self& self,
typename Self::Index firstIndex,
323 typename Self::Index numValuesToReduce, Op& reducer,
324 typename Self::CoeffReturnType* output) {
325 *output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
326 self, firstIndex, numValuesToReduce, reducer);
331template <
typename Self,
typename Op,
bool Vectorizable>
332struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
333 static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful;
334 static const Index PacketSize =
335 unpacket_traits<typename Self::PacketReturnType>::size;
338 static void run(
const Self& self, Op& reducer,
const ThreadPoolDevice& device,
339 typename Self::CoeffReturnType* output) {
340 typedef typename Self::Index
Index;
341 const Index num_coeffs = array_prod(self.m_impl.dimensions());
342 if (num_coeffs == 0) {
343 *output = reducer.finalize(reducer.initialize());
346 const TensorOpCost cost =
347 self.m_impl.costPerCoeff(Vectorizable) +
348 TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
350 const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
351 num_coeffs, cost, device.numThreads());
352 if (num_threads == 1) {
354 InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
357 const Index blocksize =
358 std::floor<Index>(
static_cast<float>(num_coeffs) / num_threads);
359 const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
360 eigen_assert(num_coeffs >= numblocks * blocksize);
362 Barrier barrier(internal::convert_index<unsigned int>(numblocks));
363 MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
364 for (
Index i = 0; i < numblocks; ++i) {
365 device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
366 self, i * blocksize, blocksize, reducer,
369 typename Self::CoeffReturnType finalShard;
370 if (numblocks * blocksize < num_coeffs) {
371 finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
372 self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
375 finalShard = reducer.initialize();
379 for (
Index i = 0; i < numblocks; ++i) {
380 reducer.reduce(shards[i], &finalShard);
382 *output = reducer.finalize(finalShard);
390template <
typename Self,
typename Op,
typename Device>
392 static const bool HasOptimizedImplementation =
false;
394 EIGEN_DEVICE_FUNC
static bool run(
const Self&, Op&,
const Device&,
typename Self::CoeffReturnType*,
typename Self::Index,
typename Self::Index) {
395 eigen_assert(
false &&
"Not implemented");
401template <
typename Self,
typename Op,
typename Device>
403 static const bool HasOptimizedImplementation =
false;
405 EIGEN_DEVICE_FUNC
static bool run(
const Self&, Op&,
const Device&,
typename Self::CoeffReturnType*,
typename Self::Index,
typename Self::Index) {
406 eigen_assert(
false &&
"Not implemented");
413template <
typename Self,
typename Op,
typename Device>
414struct GenericReducer {
415 static const bool HasOptimizedImplementation =
false;
417 EIGEN_DEVICE_FUNC
static bool run(
const Self&, Op&,
const Device&,
typename Self::CoeffReturnType*,
typename Self::Index,
typename Self::Index) {
418 eigen_assert(
false &&
"Not implemented");
424#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
425template <
int B,
int N,
typename S,
typename R,
typename I_>
426__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024
void FullReductionKernel(R,
const S, I_,
typename S::CoeffReturnType*,
unsigned int*);
429#if defined(EIGEN_HAS_GPU_FP16)
430template <
typename S,
typename R,
typename I_>
431__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024
void ReductionInitFullReduxKernelHalfFloat(R,
const S, I_, internal::packet_traits<half>::type*);
432template <
int B,
int N,
typename S,
typename R,
typename I_>
433__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024
void FullReductionKernelHalfFloat(R,
const S, I_, half*, internal::packet_traits<half>::type*);
434template <
int NPT,
typename S,
typename R,
typename I_>
435__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024
void InnerReductionKernelHalfFloat(R,
const S, I_, I_, half*);
439template <
int NPT,
typename S,
typename R,
typename I_>
440__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024
void InnerReductionKernel(R,
const S, I_, I_,
typename S::CoeffReturnType*);
442template <
int NPT,
typename S,
typename R,
typename I_>
443__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024
void OuterReductionKernel(R,
const S, I_, I_,
typename S::CoeffReturnType*);
454template <
typename Op,
typename CoeffReturnType>
456#if defined(EIGEN_USE_SYCL)
457 typedef typename remove_const<decltype(std::declval<Op>().initialize())>::type type;
459 typedef typename remove_const<CoeffReturnType>::type type;
471template <
typename Op,
typename Dims,
typename XprType,
template <
class>
class MakePointer_>
472class TensorReductionOp :
public TensorBase<TensorReductionOp<Op, Dims, XprType, MakePointer_>, ReadOnlyAccessors> {
474 typedef typename Eigen::internal::traits<TensorReductionOp>::Scalar Scalar;
476 typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
477 typedef typename Eigen::internal::nested<TensorReductionOp>::type Nested;
478 typedef typename Eigen::internal::traits<TensorReductionOp>::StorageKind StorageKind;
479 typedef typename Eigen::internal::traits<TensorReductionOp>::Index Index;
481 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
482 TensorReductionOp(
const XprType& expr,
const Dims& dims) : m_expr(expr), m_dims(dims)
484 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
485 TensorReductionOp(
const XprType& expr,
const Dims& dims,
const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer)
488 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
489 const XprType& expression()
const {
return m_expr; }
490 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
491 const Dims& dims()
const {
return m_dims; }
492 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
493 const Op& reducer()
const {
return m_reducer; }
496 typename XprType::Nested m_expr;
501template<
typename ArgType,
typename Device>
502struct TensorReductionEvaluatorBase;
505template<
typename Op,
typename Dims,
typename ArgType,
template <
class>
class MakePointer_,
typename Device>
506struct TensorReductionEvaluatorBase<const
TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device>
508 typedef internal::reducer_traits<Op, Device> ReducerTraits;
509 typedef Dims ReducedDims;
511 typedef typename XprType::Index
Index;
512 typedef ArgType ChildType;
513 typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
514 static const int NumInputDims = internal::array_size<InputDimensions>::value;
515 static const int NumReducedDims = internal::array_size<Dims>::value;
516 static const int NumOutputDims = NumInputDims - NumReducedDims;
517 typedef typename internal::conditional<NumOutputDims==0, Sizes<>, DSizes<Index, NumOutputDims> >::type
Dimensions;
518 typedef typename XprType::Scalar
Scalar;
519 typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Self;
520 static const bool InputPacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess;
521 typedef typename internal::ReductionReturnType<Op, typename XprType::CoeffReturnType>::type
CoeffReturnType;
522 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
523 static const Index PacketSize = PacketType<CoeffReturnType, Device>::size;
525 typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType;
526 typedef StorageMemory<CoeffReturnType, Device> Storage;
527 typedef typename Storage::Type EvaluatorPointerType;
531 static const int NumPreservedStrides = max_n_1<NumOutputDims>::size;
534#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
535 static constexpr bool RunningOnGPU = internal::is_same<Device, Eigen::GpuDevice>::value;
536 static constexpr bool RunningOnSycl =
false;
537#elif defined(EIGEN_USE_SYCL)
538static const bool RunningOnSycl = internal::is_same<typename internal::remove_all<Device>::type, Eigen::SyclDevice>::value;
539static const bool RunningOnGPU =
false;
541 static constexpr bool RunningOnGPU =
false;
542 static constexpr bool RunningOnSycl =
false;
547 PacketAccess = Self::InputPacketAccess && ReducerTraits::PacketAccess,
549 PreferBlockAccess =
true,
550 Layout = TensorEvaluator<ArgType, Device>::Layout,
555 typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
558 typedef internal::TensorBlockNotImplemented TensorBlock;
561 static const bool ReducingInnerMostDims = internal::are_inner_most_dims<Dims, NumInputDims, Layout>::value;
562 static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims<Dims, NumInputDims, Layout>::value;
563 static const bool RunningFullReduction = (NumOutputDims==0);
565 EIGEN_STRONG_INLINE TensorReductionEvaluatorBase(
const XprType& op,
const Device& device)
566 : m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device)
568 EIGEN_STATIC_ASSERT((NumInputDims >= NumReducedDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
569 EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)),
570 YOU_MADE_A_PROGRAMMING_MISTAKE);
573 for (
int i = 0; i < NumInputDims; ++i) {
574 m_reduced[i] =
false;
576 for (
int i = 0; i < NumReducedDims; ++i) {
577 eigen_assert(op.dims()[i] >= 0);
578 eigen_assert(op.dims()[i] < NumInputDims);
579 m_reduced[op.dims()[i]] =
true;
582 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
583 internal::DimInitializer<Dimensions>::run(input_dims, m_reduced, &m_dimensions, &m_reducedDims);
586 if (NumOutputDims > 0) {
587 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
588 m_outputStrides[0] = 1;
589 for (
int i = 1; i < NumOutputDims; ++i) {
590 m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1];
591 m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
594 m_outputStrides[
static_cast<size_t>(NumOutputDims - 1)] = 1;
595 for (
int i = NumOutputDims - 2; i >= 0; --i) {
596 m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1];
597 m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
603 if (NumInputDims > 0) {
604 array<Index, NumInputDims> input_strides;
605 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
606 input_strides[0] = 1;
607 for (
int i = 1; i < NumInputDims; ++i) {
608 input_strides[i] = input_strides[i-1] * input_dims[i-1];
611 input_strides.back() = 1;
612 for (
int i = NumInputDims - 2; i >= 0; --i) {
613 input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
619 for (
int i = 0; i < NumInputDims; ++i) {
621 m_reducedStrides[reduceIndex] = input_strides[i];
624 m_preservedStrides[outputIndex] = input_strides[i];
625 m_output_to_input_dim_map[outputIndex] = i;
632 if (NumOutputDims == 0) {
633 m_preservedStrides[0] = internal::array_prod(input_dims);
636 m_numValuesToReduce =
638 ? internal::array_prod(input_dims)
639 : (static_cast<int>(Layout) == static_cast<int>(
ColMajor))
640 ? m_preservedStrides[0]
641 : m_preservedStrides[NumOutputDims - 1];
644 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
647 bool evalSubExprsIfNeededCommon(EvaluatorPointerType data) {
649 if ((RunningFullReduction && RunningOnSycl) ||(RunningFullReduction &&
650 internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
651 ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
653 bool need_assign =
false;
655 m_result =
static_cast<EvaluatorPointerType
>(m_device.get((CoeffReturnType*)m_device.allocate_temp(
sizeof(CoeffReturnType))));
659 Op reducer(m_reducer);
660 internal::FullReducer<Self, Op, Device>::run(*
this, reducer, m_device, data);
665 else if ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) || (RunningOnSycl)) {
666 bool reducing_inner_dims =
true;
667 for (
int i = 0; i < NumReducedDims; ++i) {
668 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
669 reducing_inner_dims &= m_reduced[i];
671 reducing_inner_dims &= m_reduced[NumInputDims - 1 - i];
674 if (internal::InnerReducer<Self, Op, Device>::HasOptimizedImplementation &&
675 (reducing_inner_dims || ReducingInnerMostDims)) {
676 const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
677 const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
679 if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 128) || (RunningOnSycl)) {
680 data =
static_cast<EvaluatorPointerType
>(m_device.get((CoeffReturnType*)m_device.allocate_temp(
sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
687 Op reducer(m_reducer);
689 if (internal::InnerReducer<Self, Op, Device>::run(*
this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
691 m_device.deallocate_temp(m_result);
696 return (m_result != NULL);
700 bool preserving_inner_dims =
true;
701 for (
int i = 0; i < NumReducedDims; ++i) {
702 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
703 preserving_inner_dims &= m_reduced[NumInputDims - 1 - i];
705 preserving_inner_dims &= m_reduced[i];
708 if (internal::OuterReducer<Self, Op, Device>::HasOptimizedImplementation &&
709 preserving_inner_dims) {
710 const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
711 const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
713 if ((num_coeffs_to_preserve < 1024 && num_values_to_reduce > num_coeffs_to_preserve && num_values_to_reduce > 32) || (RunningOnSycl)) {
714 data =
static_cast<EvaluatorPointerType
>(m_device.get((CoeffReturnType*)m_device.allocate_temp(
sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
721 Op reducer(m_reducer);
723 if (internal::OuterReducer<Self, Op, Device>::run(*
this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve)) {
725 m_device.deallocate_temp(m_result);
730 return (m_result != NULL);
733 #if defined(EIGEN_USE_SYCL)
737 const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
738 const Index num_coeffs_to_preserve = internal::array_prod(m_dimensions);
740 data =
static_cast<EvaluatorPointerType
>(m_device.get((CoeffReturnType*)m_device.allocate_temp(
sizeof(CoeffReturnType) * num_coeffs_to_preserve)));
743 Op reducer(m_reducer);
744 internal::GenericReducer<Self, Op, Device>::run(*
this, reducer, m_device, data, num_values_to_reduce, num_coeffs_to_preserve);
745 return (m_result != NULL);
752#ifdef EIGEN_USE_THREADS
753 template <
typename EvalSubExprsCallback>
756 evalSubExprsIfNeededAsync(EvaluatorPointerType data,
757 EvalSubExprsCallback done) {
758 m_impl.evalSubExprsIfNeededAsync(NULL, [
this, data, done](
bool) {
759 done(evalSubExprsIfNeededCommon(data));
765 bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
766 m_impl.evalSubExprsIfNeeded(NULL);
767 return evalSubExprsIfNeededCommon(data);
770 EIGEN_STRONG_INLINE
void cleanup() {
773 m_device.deallocate_temp(m_result);
778 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(
Index index)
const
780 if (( RunningFullReduction || RunningOnGPU) && m_result ) {
781 return *(m_result + index);
783 Op reducer(m_reducer);
784 if (ReducingInnerMostDims || RunningFullReduction) {
785 const Index num_values_to_reduce =
786 (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
787 return internal::InnerMostDimReducer<Self, Op>::reduce(*
this, firstInput(index),
788 num_values_to_reduce, reducer);
790 typename Self::CoeffReturnType accum = reducer.initialize();
791 internal::GenericDimReducer<NumReducedDims-1, Self, Op>::reduce(*
this, firstInput(index), reducer, &accum);
792 return reducer.finalize(accum);
797 template<
int LoadMode>
798 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(
Index index)
const
800 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
801 eigen_assert(index + PacketSize - 1 <
Index(internal::array_prod(dimensions())));
803 if (RunningOnGPU && m_result) {
804 return internal::pload<PacketReturnType>(m_result + index);
807 EIGEN_ALIGN_MAX
typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
808 if (ReducingInnerMostDims) {
809 const Index num_values_to_reduce =
810 (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1];
811 const Index firstIndex = firstInput(index);
812 for (
Index i = 0; i < PacketSize; ++i) {
813 Op reducer(m_reducer);
814 values[i] = internal::InnerMostDimReducer<Self, Op>::reduce(*
this, firstIndex + i * num_values_to_reduce,
815 num_values_to_reduce, reducer);
817 }
else if (PreservingInnerMostDims) {
818 const Index firstIndex = firstInput(index);
819 const int innermost_dim = (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) ? 0 : NumOutputDims - 1;
821 if (((firstIndex % m_dimensions[innermost_dim]) + PacketSize - 1) < m_dimensions[innermost_dim]) {
822 Op reducer(m_reducer);
823 typename Self::PacketReturnType accum = reducer.template initializePacket<typename Self::PacketReturnType>();
824 internal::InnerMostDimPreserver<NumReducedDims-1, Self, Op>::reduce(*
this, firstIndex, reducer, &accum);
825 return reducer.finalizePacket(accum);
827 for (
int i = 0; i < PacketSize; ++i) {
828 values[i] = coeff(index + i);
832 for (
int i = 0; i < PacketSize; ++i) {
833 values[i] = coeff(index + i);
836 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
841 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(
bool vectorized)
const {
842 if (RunningFullReduction && m_result) {
843 return TensorOpCost(
sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
845 const Index num_values_to_reduce = internal::array_prod(m_reducedDims);
846 const double compute_cost = num_values_to_reduce * internal::functor_traits<Op>::Cost;
847 return m_impl.costPerCoeff(vectorized) * num_values_to_reduce +
848 TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
852 EIGEN_DEVICE_FUNC EvaluatorPointerType data()
const {
return m_result; }
853 EIGEN_DEVICE_FUNC
const TensorEvaluator<ArgType, Device>& impl()
const {
return m_impl; }
854 EIGEN_DEVICE_FUNC
const Device& device()
const {
return m_device; }
857 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void bind(cl::sycl::handler &cgh)
const {
864 template <
int,
typename,
typename>
friend struct internal::GenericDimReducer;
865 template <
typename,
typename,
bool,
bool>
friend struct internal::InnerMostDimReducer;
866 template <
int,
typename,
typename,
bool>
friend struct internal::InnerMostDimPreserver;
867 template <
typename S,
typename O,
typename D,
bool V>
friend struct internal::FullReducer;
868#ifdef EIGEN_USE_THREADS
869 template <
typename S,
typename O,
bool V>
friend struct internal::FullReducerShard;
871#if defined(EIGEN_USE_GPU) && (defined(EIGEN_GPUCC))
872 template <
int B,
int N,
typename S,
typename R,
typename I_> KERNEL_FRIEND
void internal::FullReductionKernel(R,
const S, I_,
typename S::CoeffReturnType*,
unsigned int*);
873#if defined(EIGEN_HAS_GPU_FP16)
874 template <
typename S,
typename R,
typename I_> KERNEL_FRIEND
void internal::ReductionInitFullReduxKernelHalfFloat(R,
const S, I_, internal::packet_traits<Eigen::half>::type*);
875 template <
int B,
int N,
typename S,
typename R,
typename I_> KERNEL_FRIEND
void internal::FullReductionKernelHalfFloat(R,
const S, I_, half*, internal::packet_traits<Eigen::half>::type*);
876 template <
int NPT,
typename S,
typename R,
typename I_> KERNEL_FRIEND
void internal::InnerReductionKernelHalfFloat(R,
const S, I_, I_, half*);
878 template <
int NPT,
typename S,
typename R,
typename I_> KERNEL_FRIEND
void internal::InnerReductionKernel(R,
const S, I_, I_,
typename S::CoeffReturnType*);
880 template <
int NPT,
typename S,
typename R,
typename I_> KERNEL_FRIEND
void internal::OuterReductionKernel(R,
const S, I_, I_,
typename S::CoeffReturnType*);
883#if defined(EIGEN_USE_SYCL)
884 template <
typename Evaluator_,
typename Op__>
friend class TensorSycl::internal::GenericNondeterministicReducer;
886 template <
typename,
typename,
typename>
friend struct internal::GenericReducer;
890 template <
typename S,
typename O,
typename D>
friend struct internal::InnerReducer;
892 struct BlockIteratorState {
900 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Index firstInput(
Index index)
const {
901 if (ReducingInnerMostDims) {
902 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
903 return index * m_preservedStrides[0];
905 return index * m_preservedStrides[NumPreservedStrides - 1];
909 Index startInput = 0;
910 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
911 for (
int i = NumOutputDims - 1; i > 0; --i) {
913 const Index idx = index / m_outputStrides[i];
914 startInput += idx * m_preservedStrides[i];
915 index -= idx * m_outputStrides[i];
917 if (PreservingInnerMostDims) {
918 eigen_assert(m_preservedStrides[0] == 1);
921 startInput += index * m_preservedStrides[0];
924 for (
int i = 0; i < NumOutputDims - 1; ++i) {
926 const Index idx = index / m_outputStrides[i];
927 startInput += idx * m_preservedStrides[i];
928 index -= idx * m_outputStrides[i];
930 if (PreservingInnerMostDims) {
931 eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1);
934 startInput += index * m_preservedStrides[NumPreservedStrides - 1];
941 array<bool, NumInputDims> m_reduced;
943 Dimensions m_dimensions;
945 array<Index, NumOutputDims> m_outputStrides;
946 array<internal::TensorIntDivisor<Index>, NumOutputDims> m_fastOutputStrides;
947 array<Index, NumPreservedStrides> m_preservedStrides;
949 array<Index, NumOutputDims> m_output_to_input_dim_map;
951 Index m_numValuesToReduce;
955 array<Index, NumReducedDims> m_reducedStrides;
958 array<Index, NumReducedDims> m_reducedDims;
961 TensorEvaluator<ArgType, Device> m_impl;
966 EvaluatorPointerType m_result;
968 const Device EIGEN_DEVICE_REF m_device;
971template<
typename Op,
typename Dims,
typename ArgType,
template <
class>
class MakePointer_,
typename Device>
973:
public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> {
974 typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Device> Base;
975 EIGEN_STRONG_INLINE TensorEvaluator(
const typename Base::XprType& op,
const Device& device) : Base(op, device){}
979template<
typename Op,
typename Dims,
typename ArgType,
template <
class>
class MakePointer_>
981:
public TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> {
983 typedef TensorReductionEvaluatorBase<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>, Eigen::SyclDevice> Base;
984 EIGEN_STRONG_INLINE TensorEvaluator(
const typename Base::XprType& op,
const Eigen::SyclDevice& device) : Base(op, device){}
987 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename Base::CoeffReturnType coeff(
typename Base::Index index)
const {
988 return *(this->data() + index);
992 template<
int LoadMode>
993 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename Base::PacketReturnType packet(
typename Base::Index index)
const {
994 return internal::pload<typename Base::PacketReturnType>(this->data() + index);
The tensor base class.
Definition TensorForwardDeclarations.h:56
Tensor reduction class.
Definition TensorReduction.h:472
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
Definition TensorReduction.h:455