10#ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
11#define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H
16template<
typename PaddingDimensions,
typename XprType>
17struct traits<TensorPaddingOp<PaddingDimensions, XprType> > :
public traits<XprType>
19 typedef typename XprType::Scalar Scalar;
20 typedef traits<XprType> XprTraits;
21 typedef typename XprTraits::StorageKind StorageKind;
22 typedef typename XprTraits::Index
Index;
23 typedef typename XprType::Nested Nested;
24 typedef typename remove_reference<Nested>::type _Nested;
25 static const int NumDimensions = XprTraits::NumDimensions;
26 static const int Layout = XprTraits::Layout;
27 typedef typename XprTraits::PointerType PointerType;
30template<
typename PaddingDimensions,
typename XprType>
31struct eval<TensorPaddingOp<PaddingDimensions, XprType>, Eigen::Dense>
33 typedef const TensorPaddingOp<PaddingDimensions, XprType>& type;
36template<
typename PaddingDimensions,
typename XprType>
37struct nested<TensorPaddingOp<PaddingDimensions, XprType>, 1, typename eval<TensorPaddingOp<PaddingDimensions, XprType> >::type>
39 typedef TensorPaddingOp<PaddingDimensions, XprType> type;
51template <
typename PaddingDimensions,
typename XprType>
52class TensorPaddingOp :
public TensorBase<TensorPaddingOp<PaddingDimensions, XprType>, ReadOnlyAccessors> {
54 typedef typename Eigen::internal::traits<TensorPaddingOp>::Scalar Scalar;
56 typedef typename XprType::CoeffReturnType CoeffReturnType;
57 typedef typename Eigen::internal::nested<TensorPaddingOp>::type Nested;
58 typedef typename Eigen::internal::traits<TensorPaddingOp>::StorageKind StorageKind;
59 typedef typename Eigen::internal::traits<TensorPaddingOp>::Index Index;
61 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(
const XprType& expr,
const PaddingDimensions& padding_dims,
const Scalar padding_value)
62 : m_xpr(expr), m_padding_dims(padding_dims), m_padding_value(padding_value) {}
65 const PaddingDimensions& padding()
const {
return m_padding_dims; }
67 Scalar padding_value()
const {
return m_padding_value; }
70 const typename internal::remove_all<typename XprType::Nested>::type&
71 expression()
const {
return m_xpr; }
74 typename XprType::Nested m_xpr;
75 const PaddingDimensions m_padding_dims;
76 const Scalar m_padding_value;
81template<
typename PaddingDimensions,
typename ArgType,
typename Device>
85 typedef typename XprType::Index
Index;
86 static const int NumDims = internal::array_size<PaddingDimensions>::value;
88 typedef typename XprType::Scalar
Scalar;
90 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
91 static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
92 typedef StorageMemory<CoeffReturnType, Device> Storage;
93 typedef typename Storage::Type EvaluatorPointerType;
97 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
99 PreferBlockAccess =
true,
100 Layout = TensorEvaluator<ArgType, Device>::Layout,
105 typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
108 typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
109 typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
111 typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims,
116 EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device& device)
117 : m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value()), m_device(device)
122 EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
125 m_dimensions = m_impl.dimensions();
126 for (
int i = 0; i < NumDims; ++i) {
127 m_dimensions[i] += m_padding[i].first + m_padding[i].second;
129 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
130 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
131 m_inputStrides[0] = 1;
132 m_outputStrides[0] = 1;
133 for (
int i = 1; i < NumDims; ++i) {
134 m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
135 m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
137 m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1];
139 m_inputStrides[NumDims - 1] = 1;
140 m_outputStrides[NumDims] = 1;
141 for (
int i = NumDims - 2; i >= 0; --i) {
142 m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
143 m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1];
145 m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0];
149 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
151 EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(EvaluatorPointerType) {
152 m_impl.evalSubExprsIfNeeded(NULL);
156#ifdef EIGEN_USE_THREADS
157 template <
typename EvalSubExprsCallback>
158 EIGEN_STRONG_INLINE
void evalSubExprsIfNeededAsync(
159 EvaluatorPointerType, EvalSubExprsCallback done) {
160 m_impl.evalSubExprsIfNeededAsync(
nullptr, [done](
bool) { done(
true); });
164 EIGEN_STRONG_INLINE
void cleanup() {
168 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const
170 eigen_assert(index < dimensions().TotalSize());
171 Index inputIndex = 0;
172 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
174 for (
int i = NumDims - 1; i > 0; --i) {
175 const Index idx = index / m_outputStrides[i];
176 if (isPaddingAtIndexForDim(idx, i)) {
177 return m_paddingValue;
179 inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
180 index -= idx * m_outputStrides[i];
182 if (isPaddingAtIndexForDim(index, 0)) {
183 return m_paddingValue;
185 inputIndex += (index - m_padding[0].first);
188 for (
int i = 0; i < NumDims - 1; ++i) {
189 const Index idx = index / m_outputStrides[i+1];
190 if (isPaddingAtIndexForDim(idx, i)) {
191 return m_paddingValue;
193 inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
194 index -= idx * m_outputStrides[i+1];
196 if (isPaddingAtIndexForDim(index, NumDims-1)) {
197 return m_paddingValue;
199 inputIndex += (index - m_padding[NumDims-1].first);
201 return m_impl.coeff(inputIndex);
204 template<
int LoadMode>
205 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const
207 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
208 return packetColMajor(index);
210 return packetRowMajor(index);
213 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(
bool vectorized)
const {
214 TensorOpCost cost = m_impl.costPerCoeff(vectorized);
215 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
217 for (
int i = 0; i < NumDims; ++i)
218 updateCostPerDimension(cost, i, i == 0);
221 for (
int i = NumDims - 1; i >= 0; --i)
222 updateCostPerDimension(cost, i, i == NumDims - 1);
227 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
228 internal::TensorBlockResourceRequirements getResourceRequirements()
const {
229 const size_t target_size = m_device.lastLevelCacheSize();
230 return internal::TensorBlockResourceRequirements::merge(
231 internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size),
232 m_impl.getResourceRequirements());
235 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
236 block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
237 bool =
false)
const {
239 if (desc.size() == 0) {
240 return TensorBlock(internal::TensorBlockKind::kView, NULL,
244 static const bool IsColMajor = Layout ==
static_cast<int>(
ColMajor);
245 const int inner_dim_idx = IsColMajor ? 0 : NumDims - 1;
247 Index offset = desc.offset();
250 DSizes<Index, NumDims> output_offsets;
251 for (
int i = NumDims - 1; i > 0; --i) {
252 const int dim = IsColMajor ? i : NumDims - i - 1;
253 const int stride_dim = IsColMajor ? dim : dim + 1;
254 output_offsets[dim] = offset / m_outputStrides[stride_dim];
255 offset -= output_offsets[dim] * m_outputStrides[stride_dim];
257 output_offsets[inner_dim_idx] = offset;
260 DSizes<Index, NumDims> input_offsets = output_offsets;
261 for (
int i = 0; i < NumDims; ++i) {
262 const int dim = IsColMajor ? i : NumDims - i - 1;
263 input_offsets[dim] = input_offsets[dim] - m_padding[dim].first;
269 Index input_offset = 0;
270 for (
int i = 0; i < NumDims; ++i) {
271 const int dim = IsColMajor ? i : NumDims - i - 1;
272 input_offset += input_offsets[dim] * m_inputStrides[dim];
278 Index output_offset = 0;
279 const DSizes<Index, NumDims> output_strides =
280 internal::strides<Layout>(desc.dimensions());
290 array<BlockIteratorState, NumDims - 1> it;
291 for (
int i = 0; i < NumDims - 1; ++i) {
292 const int dim = IsColMajor ? i + 1 : NumDims - i - 2;
294 it[i].size = desc.dimension(dim);
296 it[i].input_stride = m_inputStrides[dim];
297 it[i].input_span = it[i].input_stride * (it[i].size - 1);
299 it[i].output_stride = output_strides[dim];
300 it[i].output_span = it[i].output_stride * (it[i].size - 1);
303 const Index input_inner_dim_size =
304 static_cast<Index
>(m_impl.dimensions()[inner_dim_idx]);
307 const Index output_size = desc.size();
312 const Index output_inner_dim_size = desc.dimension(inner_dim_idx);
316 const Index output_inner_pad_before_size =
317 input_offsets[inner_dim_idx] < 0
318 ? numext::mini(numext::abs(input_offsets[inner_dim_idx]),
319 output_inner_dim_size)
323 const Index output_inner_copy_size = numext::mini(
325 (output_inner_dim_size - output_inner_pad_before_size),
327 numext::maxi(input_inner_dim_size - (input_offsets[inner_dim_idx] +
328 output_inner_pad_before_size),
331 eigen_assert(output_inner_copy_size >= 0);
335 const Index output_inner_pad_after_size =
336 (output_inner_dim_size - output_inner_copy_size -
337 output_inner_pad_before_size);
340 eigen_assert(output_inner_dim_size ==
341 (output_inner_pad_before_size + output_inner_copy_size +
342 output_inner_pad_after_size));
345 DSizes<Index, NumDims> output_coord = output_offsets;
346 DSizes<Index, NumDims> output_padded;
347 for (
int i = 0; i < NumDims; ++i) {
348 const int dim = IsColMajor ? i : NumDims - i - 1;
349 output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim);
352 typedef internal::StridedLinearBufferCopy<ScalarNoConst, Index> LinCopy;
355 const typename TensorBlock::Storage block_storage =
356 TensorBlock::prepareStorage(desc, scratch);
364 const bool squeeze_writes =
367 (input_inner_dim_size == m_dimensions[inner_dim_idx]) &&
369 (input_inner_dim_size == output_inner_dim_size);
371 const int squeeze_dim = IsColMajor ? inner_dim_idx + 1 : inner_dim_idx - 1;
374 const Index squeeze_max_coord =
375 squeeze_writes ? numext::mini(
377 static_cast<Index
>(m_dimensions[squeeze_dim] -
378 m_padding[squeeze_dim].second),
380 static_cast<Index
>(output_offsets[squeeze_dim] +
381 desc.dimension(squeeze_dim)))
382 : static_cast<Index>(0);
385 for (Index size = 0; size < output_size;) {
387 bool is_padded =
false;
388 for (
int j = 1; j < NumDims; ++j) {
389 const int dim = IsColMajor ? j : NumDims - j - 1;
390 is_padded = output_padded[dim];
391 if (is_padded)
break;
396 size += output_inner_dim_size;
398 LinCopy::template Run<LinCopy::Kind::FillLinear>(
399 typename LinCopy::Dst(output_offset, 1, block_storage.data()),
400 typename LinCopy::Src(0, 0, &m_paddingValue),
401 output_inner_dim_size);
404 }
else if (squeeze_writes) {
406 const Index squeeze_num = squeeze_max_coord - output_coord[squeeze_dim];
407 size += output_inner_dim_size * squeeze_num;
410 LinCopy::template Run<LinCopy::Kind::Linear>(
411 typename LinCopy::Dst(output_offset, 1, block_storage.data()),
412 typename LinCopy::Src(input_offset, 1, m_impl.data()),
413 output_inner_dim_size * squeeze_num);
419 it[0].count += (squeeze_num - 1);
420 input_offset += it[0].input_stride * (squeeze_num - 1);
421 output_offset += it[0].output_stride * (squeeze_num - 1);
422 output_coord[squeeze_dim] += (squeeze_num - 1);
426 size += output_inner_dim_size;
429 const Index out = output_offset;
431 LinCopy::template Run<LinCopy::Kind::FillLinear>(
432 typename LinCopy::Dst(out, 1, block_storage.data()),
433 typename LinCopy::Src(0, 0, &m_paddingValue),
434 output_inner_pad_before_size);
438 const Index out = output_offset + output_inner_pad_before_size;
439 const Index in = input_offset + output_inner_pad_before_size;
441 eigen_assert(output_inner_copy_size == 0 || m_impl.data() != NULL);
443 LinCopy::template Run<LinCopy::Kind::Linear>(
444 typename LinCopy::Dst(out, 1, block_storage.data()),
445 typename LinCopy::Src(in, 1, m_impl.data()),
446 output_inner_copy_size);
450 const Index out = output_offset + output_inner_pad_before_size +
451 output_inner_copy_size;
453 LinCopy::template Run<LinCopy::Kind::FillLinear>(
454 typename LinCopy::Dst(out, 1, block_storage.data()),
455 typename LinCopy::Src(0, 0, &m_paddingValue),
456 output_inner_pad_after_size);
460 for (
int j = 0; j < NumDims - 1; ++j) {
461 const int dim = IsColMajor ? j + 1 : NumDims - j - 2;
463 if (++it[j].count < it[j].size) {
464 input_offset += it[j].input_stride;
465 output_offset += it[j].output_stride;
466 output_coord[dim] += 1;
467 output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim);
471 input_offset -= it[j].input_span;
472 output_offset -= it[j].output_span;
473 output_coord[dim] -= it[j].size - 1;
474 output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim);
478 return block_storage.AsTensorMaterializedBlock();
481 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data()
const {
return NULL; }
485 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void bind(cl::sycl::handler &cgh)
const {
491 struct BlockIteratorState {
508 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
bool isPaddingAtIndexForDim(
509 Index index,
int dim_index)
const {
510#if defined(EIGEN_HAS_INDEX_LIST)
511 return (!internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0) &&
512 index < m_padding[dim_index].first) ||
513 (!internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0) &&
514 index >= m_dimensions[dim_index] - m_padding[dim_index].second);
516 return (index < m_padding[dim_index].first) ||
517 (index >= m_dimensions[dim_index] - m_padding[dim_index].second);
521 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
bool isLeftPaddingCompileTimeZero(
522 int dim_index)
const {
523#if defined(EIGEN_HAS_INDEX_LIST)
524 return internal::index_pair_first_statically_eq<PaddingDimensions>(dim_index, 0);
526 EIGEN_UNUSED_VARIABLE(dim_index);
531 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
bool isRightPaddingCompileTimeZero(
532 int dim_index)
const {
533#if defined(EIGEN_HAS_INDEX_LIST)
534 return internal::index_pair_second_statically_eq<PaddingDimensions>(dim_index, 0);
536 EIGEN_UNUSED_VARIABLE(dim_index);
542 void updateCostPerDimension(TensorOpCost& cost,
int i,
bool first)
const {
543 const double in =
static_cast<double>(m_impl.dimensions()[i]);
544 const double out = in + m_padding[i].first + m_padding[i].second;
547 const double reduction = in / out;
550 cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() +
551 reduction * (1 * TensorOpCost::AddCost<Index>()));
553 cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost<Index>() +
554 2 * TensorOpCost::MulCost<Index>() +
555 reduction * (2 * TensorOpCost::MulCost<Index>() +
556 1 * TensorOpCost::DivCost<Index>()));
562 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index)
const
564 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
565 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
567 const Index initialIndex = index;
568 Index inputIndex = 0;
570 for (
int i = NumDims - 1; i > 0; --i) {
571 const Index firstIdx = index;
572 const Index lastIdx = index + PacketSize - 1;
573 const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i];
574 const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i];
575 const Index lastPaddedRight = m_outputStrides[i+1];
577 if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) {
579 return internal::pset1<PacketReturnType>(m_paddingValue);
581 else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
583 return internal::pset1<PacketReturnType>(m_paddingValue);
585 else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
587 const Index idx = index / m_outputStrides[i];
588 inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
589 index -= idx * m_outputStrides[i];
593 return packetWithPossibleZero(initialIndex);
597 const Index lastIdx = index + PacketSize - 1;
598 const Index firstIdx = index;
599 const Index lastPaddedLeft = m_padding[0].first;
600 const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second);
601 const Index lastPaddedRight = m_outputStrides[1];
603 if (!isLeftPaddingCompileTimeZero(0) && lastIdx < lastPaddedLeft) {
605 return internal::pset1<PacketReturnType>(m_paddingValue);
607 else if (!isRightPaddingCompileTimeZero(0) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
609 return internal::pset1<PacketReturnType>(m_paddingValue);
611 else if ((isLeftPaddingCompileTimeZero(0) && isRightPaddingCompileTimeZero(0)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
613 inputIndex += (index - m_padding[0].first);
614 return m_impl.template packet<Unaligned>(inputIndex);
617 return packetWithPossibleZero(initialIndex);
620 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index)
const
622 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
623 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
625 const Index initialIndex = index;
626 Index inputIndex = 0;
628 for (
int i = 0; i < NumDims - 1; ++i) {
629 const Index firstIdx = index;
630 const Index lastIdx = index + PacketSize - 1;
631 const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1];
632 const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1];
633 const Index lastPaddedRight = m_outputStrides[i];
635 if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) {
637 return internal::pset1<PacketReturnType>(m_paddingValue);
639 else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
641 return internal::pset1<PacketReturnType>(m_paddingValue);
643 else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
645 const Index idx = index / m_outputStrides[i+1];
646 inputIndex += (idx - m_padding[i].first) * m_inputStrides[i];
647 index -= idx * m_outputStrides[i+1];
651 return packetWithPossibleZero(initialIndex);
655 const Index lastIdx = index + PacketSize - 1;
656 const Index firstIdx = index;
657 const Index lastPaddedLeft = m_padding[NumDims-1].first;
658 const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second);
659 const Index lastPaddedRight = m_outputStrides[NumDims-1];
661 if (!isLeftPaddingCompileTimeZero(NumDims-1) && lastIdx < lastPaddedLeft) {
663 return internal::pset1<PacketReturnType>(m_paddingValue);
665 else if (!isRightPaddingCompileTimeZero(NumDims-1) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) {
667 return internal::pset1<PacketReturnType>(m_paddingValue);
669 else if ((isLeftPaddingCompileTimeZero(NumDims-1) && isRightPaddingCompileTimeZero(NumDims-1)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) {
671 inputIndex += (index - m_padding[NumDims-1].first);
672 return m_impl.template packet<Unaligned>(inputIndex);
675 return packetWithPossibleZero(initialIndex);
678 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index)
const
680 EIGEN_ALIGN_MAX
typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
682 for (
int i = 0; i < PacketSize; ++i) {
683 values[i] = coeff(index+i);
685 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
689 Dimensions m_dimensions;
690 array<Index, NumDims+1> m_outputStrides;
691 array<Index, NumDims> m_inputStrides;
692 TensorEvaluator<ArgType, Device> m_impl;
693 PaddingDimensions m_padding;
695 Scalar m_paddingValue;
697 const Device EIGEN_DEVICE_REF m_device;
The tensor base class.
Definition TensorForwardDeclarations.h:56
Tensor padding class. At the moment only padding with a constant value is supported.
Definition TensorPadding.h:52
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:27