10#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
11#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H
17template<
typename Dimensions,
typename LhsXprType,
typename RhsXprType,
typename OutputKernelType>
18struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >
21 typedef typename gebp_traits<typename remove_const<typename LhsXprType::Scalar>::type,
22 typename remove_const<typename RhsXprType::Scalar>::type>::ResScalar Scalar;
24 typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
25 typename traits<RhsXprType>::StorageKind>::ret StorageKind;
26 typedef typename promote_index_type<typename traits<LhsXprType>::Index,
27 typename traits<RhsXprType>::Index>::type
Index;
28 typedef typename LhsXprType::Nested LhsNested;
29 typedef typename RhsXprType::Nested RhsNested;
30 typedef typename remove_reference<LhsNested>::type _LhsNested;
31 typedef typename remove_reference<RhsNested>::type _RhsNested;
34 static const int NumDimensions = traits<LhsXprType>::NumDimensions + traits<RhsXprType>::NumDimensions - 2 * array_size<Dimensions>::value;
35 static const int Layout = traits<LhsXprType>::Layout;
36 typedef typename conditional<Pointer_type_promotion<typename LhsXprType::Scalar, Scalar>::val,
37 typename traits<LhsXprType>::PointerType,
38 typename traits<RhsXprType>::PointerType>::type
46template<
typename Dimensions,
typename LhsXprType,
typename RhsXprType,
typename OutputKernelType>
47struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, Eigen::Dense>
49 typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>& type;
52template<
typename Dimensions,
typename LhsXprType,
typename RhsXprType,
typename OutputKernelType>
53struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >::type>
55 typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> type;
58template<
typename Indices_,
typename LeftArgType_,
typename RightArgType_,
typename OutputKernelType_,
typename Device_>
59struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_, OutputKernelType_>, Device_> > {
60 typedef Indices_ Indices;
61 typedef LeftArgType_ LeftArgType;
62 typedef RightArgType_ RightArgType;
63 typedef OutputKernelType_ OutputKernelType;
64 typedef Device_ Device;
67 static const int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value;
71template <
typename LhsScalar,
typename RhsScalar>
72struct TensorContractionBlockMemAllocator {
73 typedef void* BlockMemHandle;
75 template <
typename Device>
76 EIGEN_DEVICE_FUNC
static BlockMemHandle allocate(Device& d,
const Index bm,
79 LhsScalar** lhs_block,
80 RhsScalar** rhs_block) {
81 eigen_assert(lhs_block);
82 eigen_assert(rhs_block);
83 BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn);
84 char* block_mem =
static_cast<char*
>(d.allocate(sz.lhs_size + sz.rhs_size));
85 *lhs_block =
reinterpret_cast<LhsScalar*
>(block_mem);
86 *rhs_block =
reinterpret_cast<RhsScalar*
>(block_mem + sz.lhs_size);
90 template <
typename Device>
91 EIGEN_DEVICE_FUNC
static BlockMemHandle allocateSlices(
94 std::vector<LhsScalar*>* lhs_blocks,
95 std::vector<RhsScalar*>* rhs_blocks) {
96 eigen_assert(num_slices > 0);
97 eigen_assert(num_lhs >= 0 && num_rhs >= 0);
98 eigen_assert(num_lhs == 0 || lhs_blocks);
99 eigen_assert(num_rhs == 0 || rhs_blocks);
100 BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn);
101 void* block_mem = d.allocate(
102 (num_lhs * sz.lhs_size + num_rhs * sz.rhs_size) * num_slices);
103 eigen_assert(block_mem);
104 char* mem =
static_cast<char*
>(block_mem);
106 for (
Index x = 0; x < num_slices; x++) {
107 if (num_lhs > 0) lhs_blocks[x].resize(num_lhs);
108 for (
Index m = 0; m < num_lhs; m++) {
109 lhs_blocks[x][m] =
reinterpret_cast<LhsScalar*
>(mem);
112 if (num_rhs > 0) rhs_blocks[x].resize(num_rhs);
113 for (
Index n = 0; n < num_rhs; n++) {
114 rhs_blocks[x][n] =
reinterpret_cast<RhsScalar*
>(mem);
122 template <
typename Device>
123 EIGEN_DEVICE_FUNC
static void deallocate(Device& d, BlockMemHandle handle) {
124 d.deallocate(handle);
132 EIGEN_DEVICE_FUNC
static BlockSizes ComputeLhsRhsBlockSizes(
const Index bm,
135 Index align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
137 sz.lhs_size = divup<Index>(bm * bk *
sizeof(LhsScalar), align) * align;
138 sz.rhs_size = divup<Index>(bn * bk *
sizeof(RhsScalar), align) * align;
171template <
typename ResScalar,
typename LhsScalar,
typename RhsScalar,
172 typename StorageIndex,
typename OutputMapper,
typename LhsMapper,
174struct TensorContractionKernel {
177 enum { HasBeta =
false };
180 TensorContractionKernel(StorageIndex m_, StorageIndex k_, StorageIndex n_,
181 StorageIndex bm_, StorageIndex bk_, StorageIndex bn_)
182 : m(m_), k(k_), n(n_), bm(bm_), bk(bk_), bn(bn_) {}
185 typedef LhsScalar* LhsBlock;
186 typedef RhsScalar* RhsBlock;
189 typedef TensorContractionBlockMemAllocator<LhsScalar, RhsScalar>
191 typedef typename BlockMemAllocator::BlockMemHandle BlockMemHandle;
193 typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
195 typedef internal::gemm_pack_lhs<
196 LhsScalar, StorageIndex,
typename LhsMapper::SubMapper, Traits::mr,
197 Traits::LhsProgress,
typename Traits::LhsPacket4Packing,
ColMajor>
200 typedef internal::gemm_pack_rhs<RhsScalar, StorageIndex,
201 typename RhsMapper::SubMapper, Traits::nr,
205 typedef internal::gebp_kernel<LhsScalar, RhsScalar, StorageIndex,
206 OutputMapper, Traits::mr, Traits::nr,
210 template <
typename Device>
211 EIGEN_DEVICE_FUNC BlockMemHandle allocate(Device& d, LhsBlock* lhs_block,
212 RhsBlock* rhs_block) {
213 return BlockMemAllocator::allocate(d, bm, bk, bn, lhs_block, rhs_block);
216 template <
typename Device>
217 EIGEN_DEVICE_FUNC BlockMemHandle allocateSlices(
218 Device& d,
const StorageIndex num_lhs,
const StorageIndex num_rhs,
219 const StorageIndex num_slices, std::vector<LhsBlock>* lhs_blocks,
220 std::vector<RhsBlock>* rhs_blocks) {
221 return BlockMemAllocator::allocateSlices(
222 d, bm, bk, bn, num_lhs, num_rhs, num_slices, lhs_blocks, rhs_blocks);
225 template <
typename Device>
226 EIGEN_DEVICE_FUNC
static void deallocate(Device& d, BlockMemHandle handle) {
227 BlockMemAllocator::deallocate(d, handle);
230 EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE
void packLhs(
231 LhsBlock* lhsBlock,
const typename LhsMapper::SubMapper& data_mapper,
232 const StorageIndex depth,
const StorageIndex rows) {
233 LhsPacker()(*lhsBlock, data_mapper, depth, rows, 0,
237 EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE
void packRhs(
238 RhsBlock* rhsBlock,
const typename RhsMapper::SubMapper& data_mapper,
239 const StorageIndex depth,
const StorageIndex cols) {
240 RhsPacker()(*rhsBlock, data_mapper, depth, cols);
243 EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE
void invoke(
244 const OutputMapper& output_mapper,
const LhsBlock& lhsBlock,
245 const RhsBlock& rhsBlock,
const StorageIndex rows,
246 const StorageIndex depth,
const StorageIndex cols,
247 const ResScalar alpha,
const ResScalar beta) {
249 eigen_assert(beta == ResScalar(1));
250 static const int kComputeStrideFromBlockDimensions = -1;
251 GebpKernel()(output_mapper, lhsBlock, rhsBlock, rows, depth, cols, alpha,
252 kComputeStrideFromBlockDimensions,
253 kComputeStrideFromBlockDimensions,
261 const StorageIndex m;
262 const StorageIndex k;
263 const StorageIndex n;
264 const StorageIndex bm;
265 const StorageIndex bk;
266 const StorageIndex bn;
273struct TensorContractionParams {
276 bool swapped_arguments;
286struct NoOpOutputKernel {
302 template <
typename Index,
typename Scalar>
303 EIGEN_ALWAYS_INLINE
void operator()(
304 const internal::blas_data_mapper<Scalar, Index, ColMajor>& output_mapper,
305 const TensorContractionParams& params,
Index i,
307 EIGEN_UNUSED_VARIABLE(output_mapper);
308 EIGEN_UNUSED_VARIABLE(params);
309 EIGEN_UNUSED_VARIABLE(i);
310 EIGEN_UNUSED_VARIABLE(j);
311 EIGEN_UNUSED_VARIABLE(num_rows);
312 EIGEN_UNUSED_VARIABLE(num_cols);
319template <
typename Indices,
typename LhsXprType,
typename RhsXprType,
320 typename OutputKernelType =
const NoOpOutputKernel>
321class TensorContractionOp
322 :
public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType, OutputKernelType>, ReadOnlyAccessors> {
324 typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar;
325 typedef typename internal::gebp_traits<
typename LhsXprType::CoeffReturnType,
326 typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType;
327 typedef typename Eigen::internal::nested<TensorContractionOp>::type Nested;
328 typedef typename Eigen::internal::traits<TensorContractionOp>::StorageKind StorageKind;
329 typedef typename Eigen::internal::traits<TensorContractionOp>::Index Index;
331 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp(
332 const LhsXprType& lhs,
const RhsXprType& rhs,
const Indices& dims,
333 const OutputKernelType& output_kernel = OutputKernelType())
334 : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims),
335 m_output_kernel(output_kernel) {}
338 const Indices& indices()
const {
return m_indices; }
342 const typename internal::remove_all<typename LhsXprType::Nested>::type&
346 const typename internal::remove_all<typename RhsXprType::Nested>::type&
347 rhsExpression()
const {
return m_rhs_xpr; }
350 const OutputKernelType& outputKernel()
const {
return m_output_kernel; }
353 typename LhsXprType::Nested m_lhs_xpr;
354 typename RhsXprType::Nested m_rhs_xpr;
355 const Indices m_indices;
356 const OutputKernelType m_output_kernel;
360template<
typename Derived>
361struct TensorContractionEvaluatorBase : internal::no_assignment_operator
363 typedef typename internal::traits<Derived>::Indices Indices;
364 typedef typename internal::traits<Derived>::LeftArgType LeftArgType;
365 typedef typename internal::traits<Derived>::RightArgType RightArgType;
366 typedef typename internal::traits<Derived>::OutputKernelType OutputKernelType;
367 typedef typename internal::traits<Derived>::Device Device;
369 typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
370 typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
371 typedef typename XprType::Index Index;
372 typedef typename XprType::CoeffReturnType CoeffReturnType;
373 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
374 typedef StorageMemory<Scalar, Device> Storage;
375 typedef typename Storage::Type EvaluatorPointerType;
379 PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1),
381 PreferBlockAccess =
false,
382 Layout = TensorEvaluator<LeftArgType, Device>::Layout,
388 typedef internal::TensorBlockNotImplemented TensorBlock;
395 typedef typename internal::conditional<
396 static_cast<int>(Layout) ==
static_cast<int>(
ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
397 typedef typename internal::conditional<
398 static_cast<int>(Layout) ==
static_cast<int>(
ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
400 typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluatorType;
401 typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluatorType;
403 static const int LDims =
404 internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
405 static const int RDims =
406 internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
407 static const int ContractDims = internal::array_size<Indices>::value;
408 static const int NumDims = LDims + RDims - 2 * ContractDims;
410 typedef array<Index, ContractDims> contract_t;
411 typedef array<Index, LDims - ContractDims> left_nocontract_t;
412 typedef array<Index, RDims - ContractDims> right_nocontract_t;
414 typedef DSizes<Index, NumDims> Dimensions;
417 TensorContractionEvaluatorBase(
const XprType& op,
const Device& device)
418 : m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(
ColMajor)>(),
419 op.lhsExpression(), op.rhsExpression()), device),
420 m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(
ColMajor)>(),
421 op.rhsExpression(), op.lhsExpression()), device),
423 m_output_kernel(op.outputKernel()),
425 EIGEN_STATIC_ASSERT((
static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) ==
426 static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)),
427 YOU_MADE_A_PROGRAMMING_MISTAKE);
430 DSizes<Index, LDims> eval_left_dims;
431 DSizes<Index, RDims> eval_right_dims;
432 array<IndexPair<Index>, ContractDims> eval_op_indices;
433 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
435 for (
int i = 0; i < LDims; i++) {
436 eval_left_dims[i] = m_leftImpl.dimensions()[i];
438 for (
int i = 0; i < RDims; i++) {
439 eval_right_dims[i] = m_rightImpl.dimensions()[i];
442 for (
int i = 0; i < ContractDims; i++) {
443 eval_op_indices[i].first = op.indices()[i].first;
444 eval_op_indices[i].second = op.indices()[i].second;
448 for (
int i = 0; i < LDims; i++) {
449 eval_left_dims[i] = m_leftImpl.dimensions()[LDims - i - 1];
451 for (
int i = 0; i < RDims; i++) {
452 eval_right_dims[i] = m_rightImpl.dimensions()[RDims - i - 1];
456 for (
int i = 0; i < ContractDims; i++) {
457 eval_op_indices[i].first = LDims - 1 - op.indices()[ContractDims - 1 - i].second;
458 eval_op_indices[i].second = RDims - 1 - op.indices()[ContractDims - 1 - i].first;
464 for (
int i = 0; i < ContractDims; i++) {
465 for (
int j = i + 1; j < ContractDims; j++) {
466 eigen_assert(eval_op_indices[j].first != eval_op_indices[i].first &&
467 eval_op_indices[j].second != eval_op_indices[i].second &&
468 "contraction axes should be unique");
469 if (eval_op_indices[j].first < eval_op_indices[i].first) {
470 numext::swap(eval_op_indices[j], eval_op_indices[i]);
475 array<Index, LDims> lhs_strides;
477 for (
int i = 0; i < LDims-1; ++i) {
478 lhs_strides[i+1] = lhs_strides[i] * eval_left_dims[i];
481 array<Index, RDims> rhs_strides;
483 for (
int i = 0; i < RDims-1; ++i) {
484 rhs_strides[i+1] = rhs_strides[i] * eval_right_dims[i];
487 if (m_i_strides.size() > 0) m_i_strides[0] = 1;
488 if (m_j_strides.size() > 0) m_j_strides[0] = 1;
489 if (m_k_strides.size() > 0) m_k_strides[0] = 1;
499 m_lhs_inner_dim_contiguous =
true;
501 Index nocontract_idx = 0;
503 for (
int i = 0; i < LDims; i++) {
505 bool contracting =
false;
506 for (
int j = 0; j < ContractDims; j++) {
507 if (eval_op_indices[j].first == i) {
514 m_dimensions[dim_idx] = eval_left_dims[i];
515 m_left_nocontract_strides[nocontract_idx] = lhs_strides[i];
517 m_lhs_inner_dim_contiguous =
false;
519 if (nocontract_idx+1 < internal::array_size<left_nocontract_t>::value) {
520 m_i_strides[nocontract_idx+1] =
521 m_i_strides[nocontract_idx] * eval_left_dims[i];
523 m_i_size = m_i_strides[nocontract_idx] * eval_left_dims[i];
531 for (
int i = 0; i < RDims; i++) {
532 bool contracting =
false;
534 for (
int j = 0; j < ContractDims; j++) {
535 if (eval_op_indices[j].second == i) {
541 m_dimensions[dim_idx] = eval_right_dims[i];
542 if (nocontract_idx+1 < internal::array_size<right_nocontract_t>::value) {
543 m_j_strides[nocontract_idx+1] =
544 m_j_strides[nocontract_idx] * eval_right_dims[i];
546 m_j_size = m_j_strides[nocontract_idx] * eval_right_dims[i];
548 m_right_nocontract_strides[nocontract_idx] = rhs_strides[i];
559 m_rhs_inner_dim_contiguous =
true;
560 m_rhs_inner_dim_reordered =
false;
561 for (
int i = 0; i < ContractDims; i++) {
562 Index left = eval_op_indices[i].first;
563 Index right = eval_op_indices[i].second;
565 Index size = eval_left_dims[left];
566 eigen_assert(size == eval_right_dims[right] &&
567 "Contraction axes must be same size");
569 if (i+1 <
static_cast<int>(internal::array_size<contract_t>::value)) {
570 m_k_strides[i+1] = m_k_strides[i] * size;
572 m_k_size = m_k_strides[i] * size;
574 m_left_contracting_strides[i] = lhs_strides[left];
575 m_right_contracting_strides[i] = rhs_strides[right];
577 if (i > 0 && right < eval_op_indices[i-1].second) {
578 m_rhs_inner_dim_reordered =
true;
581 m_rhs_inner_dim_contiguous =
false;
586 if (
static_cast<int>(Layout) ==
static_cast<int>(
RowMajor)) {
587 for (
int i = 0, j = NumDims - 1; i < j; i++, j--) {
588 numext::swap(m_dimensions[i], m_dimensions[j]);
596 m_tensor_contraction_params.swapped_arguments =
static_cast<int>(Layout) ==
RowMajor;
599 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
601 EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
602 m_leftImpl.evalSubExprsIfNeeded(NULL);
603 m_rightImpl.evalSubExprsIfNeeded(NULL);
608 m_result =
static_cast<EvaluatorPointerType
>(m_device.allocate(dimensions().TotalSize() *
sizeof(Scalar)));
614#ifdef EIGEN_USE_THREADS
615 template <
typename EvalSubExprsCallback>
616 EIGEN_STRONG_INLINE
void evalSubExprsIfNeededAsync(
617 EvaluatorPointerType dest, EvalSubExprsCallback done) {
618 m_leftImpl.evalSubExprsIfNeededAsync(
nullptr, [
this, done, dest](
bool) {
619 m_rightImpl.evalSubExprsIfNeededAsync(
nullptr, [
this, done, dest](
bool) {
621 evalToAsync(dest, [done]() { done(
false); });
623 m_result =
static_cast<EvaluatorPointerType
>(
624 m_device.allocate(dimensions().TotalSize() *
sizeof(Scalar)));
625 evalToAsync(m_result, [done]() { done(
true); });
632#ifndef TENSOR_CONTRACTION_DISPATCH
633#define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \
634 if (this->m_lhs_inner_dim_contiguous) { \
635 if (this->m_rhs_inner_dim_contiguous) { \
636 if (this->m_rhs_inner_dim_reordered) { \
637 METHOD<true, true, true, ALIGNMENT> ARGS; \
639 METHOD<true, true, false, ALIGNMENT> ARGS; \
642 if (this->m_rhs_inner_dim_reordered) { \
643 METHOD<true, false, true, ALIGNMENT> ARGS; \
645 METHOD<true, false, false, ALIGNMENT> ARGS; \
649 if (this->m_rhs_inner_dim_contiguous) { \
650 if (this->m_rhs_inner_dim_reordered) { \
651 METHOD<false, true, true, ALIGNMENT> ARGS; \
653 METHOD<false, true, false, ALIGNMENT> ARGS; \
656 if (this->m_rhs_inner_dim_reordered) { \
657 METHOD<false, false, true, ALIGNMENT> ARGS; \
659 METHOD<false, false, false, ALIGNMENT> ARGS; \
665#ifndef TENSOR_CONTRACTION_ASYNC_DISPATCH
666#define TENSOR_CONTRACTION_ASYNC_DISPATCH(METHOD, DONE, ALIGNMENT, ARGS, FN) \
667 if (this->m_lhs_inner_dim_contiguous) { \
668 if (this->m_rhs_inner_dim_contiguous) { \
669 if (this->m_rhs_inner_dim_reordered) { \
670 (new METHOD<DONE, true, true, true, ALIGNMENT> ARGS)->FN; \
672 (new METHOD<DONE, true, true, false, ALIGNMENT> ARGS)->FN; \
675 if (this->m_rhs_inner_dim_reordered) { \
676 (new METHOD<DONE, true, false, true, ALIGNMENT> ARGS)->FN; \
678 (new METHOD<DONE, true, false, false, ALIGNMENT> ARGS)->FN; \
682 if (this->m_rhs_inner_dim_contiguous) { \
683 if (this->m_rhs_inner_dim_reordered) { \
684 (new METHOD<DONE, false, true, true, ALIGNMENT> ARGS)->FN; \
686 (new METHOD<DONE, false, true, false, ALIGNMENT> ARGS)->FN; \
689 if (this->m_rhs_inner_dim_reordered) { \
690 (new METHOD<DONE, false, false, true, ALIGNMENT> ARGS)->FN; \
692 (new METHOD<DONE, false, false, false, ALIGNMENT> ARGS)->FN; \
698 EIGEN_DEVICE_FUNC
void evalTo(Scalar* buffer)
const {
699 static_cast<const Derived*
>(
this)->
template evalProduct<Unaligned>(buffer);
702#ifdef EIGEN_USE_THREADS
703 template <
typename EvalToCallback>
704 void evalToAsync(Scalar* buffer, EvalToCallback done)
const {
705 static_cast<const Derived*
>(
this)
706 ->
template evalProductAsync<EvalToCallback, Unaligned>(buffer,
711 template <
bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous,
712 bool rhs_inner_dim_reordered,
int Alignment>
713 void evalProductSequential(Scalar* buffer)
const {
714 if (this->m_j_size == 1) {
715 this->
template evalGemv<lhs_inner_dim_contiguous,
716 rhs_inner_dim_contiguous, rhs_inner_dim_reordered,
719 this->
template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous,
720 rhs_inner_dim_reordered, Alignment>(buffer);
724 template <
bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered,
int Alignment>
725 #if !defined(EIGEN_HIPCC)
728 void evalGemv(Scalar* buffer)
const {
729 const Index rows = m_i_size;
730 const Index cols = m_k_size;
732 typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
733 typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
734 typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
735 typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
736 const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
737 const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
740 typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
741 LeftEvaluator, left_nocontract_t,
742 contract_t, lhs_packet_size,
743 lhs_inner_dim_contiguous,
744 false, lhs_alignment> LhsMapper;
746 typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
747 RightEvaluator, right_nocontract_t,
748 contract_t, rhs_packet_size,
749 rhs_inner_dim_contiguous,
750 rhs_inner_dim_reordered, rhs_alignment> RhsMapper;
752 LhsMapper lhs(m_leftImpl, m_left_nocontract_strides, m_i_strides,
753 m_left_contracting_strides, m_k_strides);
754 RhsMapper rhs(m_rightImpl, m_right_nocontract_strides, m_j_strides,
755 m_right_contracting_strides, m_k_strides);
757 const Scalar alpha(1);
758 const Index resIncr(1);
761 m_device.memset(buffer, 0, rows *
sizeof(Scalar));
763 internal::general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,false,RhsScalar,RhsMapper,false>::run(
764 rows, cols, lhs, rhs,
765 buffer, resIncr, alpha);
767 typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
768 m_output_kernel(OutputMapper(buffer, rows), m_tensor_contraction_params,
769 static_cast<Index
>(0),
static_cast<Index
>(0), rows,
770 static_cast<Index
>(1));
773 template <
bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered,
int Alignment>
774 #if !defined(EIGEN_HIPCC)
777 void evalGemm(Scalar* buffer)
const {
779 const Index k = this->m_k_size;
780 this->
template evalGemmPartial<lhs_inner_dim_contiguous,
781 rhs_inner_dim_contiguous,
782 rhs_inner_dim_reordered,
783 Alignment,
true>(buffer, 0, k, 1);
786 template <
bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous,
787 bool rhs_inner_dim_reordered,
int Alignment>
788 EIGEN_DEVICE_FUNC
void evalGemmPartialWithoutOutputKernel(
789 Scalar* buffer, Index k_start, Index k_end,
int num_threads)
const {
790 evalGemmPartial<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous,
791 rhs_inner_dim_reordered, Alignment,
792 false>(buffer, k_start, k_end,
796 template <
bool lhs_inner_dim_contiguous,
bool rhs_inner_dim_contiguous,
bool rhs_inner_dim_reordered,
int Alignment,
bool use_output_kernel>
797 EIGEN_DEVICE_FUNC
void evalGemmPartial(Scalar* buffer, Index k_start, Index k_end,
int num_threads)
const {
798 eigen_assert(k_end >= k_start && k_start >= 0 && k_end <= this->m_k_size);
800 const Index k_slice = k_end - k_start;
803 const Index m = this->m_i_size;
806 const Index n = this->m_j_size;
809 typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
810 typedef typename internal::remove_const<typename EvalRightArgType::Scalar>::type RhsScalar;
812 typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
813 typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
815 const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size;
816 const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size;
818 typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs,
819 LeftEvaluator, left_nocontract_t,
820 contract_t, lhs_packet_size,
821 lhs_inner_dim_contiguous,
824 typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs,
825 RightEvaluator, right_nocontract_t,
826 contract_t, rhs_packet_size,
827 rhs_inner_dim_contiguous,
828 rhs_inner_dim_reordered,
Unaligned> RhsMapper;
830 typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
832 typedef internal::TensorContractionKernel<
833 Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper>
834 TensorContractionKernel;
837 LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides,
838 this->m_left_contracting_strides, this->m_k_strides);
840 RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides,
841 this->m_right_contracting_strides, this->m_k_strides);
843 OutputMapper output(buffer, m);
846 internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar,
847 Index, internal::ShardByCol>
848 blocking(k_slice, m, n, num_threads);
849 const Index kc = blocking.kc();
850 const Index mc = numext::mini(m, blocking.mc());
851 const Index nc = numext::mini(n, blocking.nc());
853 typedef typename TensorContractionKernel::LhsBlock LhsBlock;
854 typedef typename TensorContractionKernel::RhsBlock RhsBlock;
859 TensorContractionKernel kernel(m, k_slice, n, mc, kc, nc);
861 typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle;
862 const BlockMemHandle packed_mem =
863 kernel.allocate(this->m_device, &blockA, &blockB);
867 if (!TensorContractionKernel::HasBeta) {
868 this->m_device.memset(buffer, 0, m * n *
sizeof(Scalar));
871 for(Index i2=0; i2<m; i2+=mc)
873 const Index actual_mc = numext::mini(i2+mc,m)-i2;
874 for (Index k2 = k_start; k2 < k_end; k2 += kc) {
876 const Index actual_kc = numext::mini(k2 + kc, k_end) - k2;
877 kernel.packLhs(&blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
881 const Scalar alpha = Scalar(1);
882 const Scalar beta = (TensorContractionKernel::HasBeta && k2 == k_start)
887 for (Index j2 = 0; j2 < n; j2 += nc) {
889 const Index actual_nc = numext::mini(j2 + nc, n) - j2;
890 kernel.packRhs(&blockB, rhs.getSubMapper(k2, j2), actual_kc,
895 const OutputMapper output_mapper = output.getSubMapper(i2, j2);
896 kernel.invoke(output_mapper, blockA, blockB, actual_mc, actual_kc,
897 actual_nc, alpha, beta);
900 if (use_output_kernel && k2 + kc >= k_end) {
901 m_output_kernel(output_mapper, m_tensor_contraction_params, i2, j2,
902 actual_mc, actual_nc);
908 kernel.deallocate(this->m_device, packed_mem);
911 EIGEN_STRONG_INLINE
void cleanup() {
912 m_leftImpl.cleanup();
913 m_rightImpl.cleanup();
915 if (m_result != NULL) {
916 m_device.deallocate(m_result);
921 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const {
922 return m_result[index];
925 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(
bool)
const {
926 return TensorOpCost(
sizeof(CoeffReturnType), 0, 0);
929 template<
int LoadMode>
930 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const {
931 return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
934 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data()
const {
return m_result; }
937 Dimensions m_dimensions;
939 contract_t m_k_strides;
940 contract_t m_left_contracting_strides;
941 contract_t m_right_contracting_strides;
943 bool m_lhs_inner_dim_contiguous;
944 bool m_rhs_inner_dim_contiguous;
945 bool m_rhs_inner_dim_reordered;
947 left_nocontract_t m_i_strides;
948 right_nocontract_t m_j_strides;
949 left_nocontract_t m_left_nocontract_strides;
950 right_nocontract_t m_right_nocontract_strides;
956 TensorContractionParams m_tensor_contraction_params;
958 TensorEvaluator<EvalLeftArgType, Device> m_leftImpl;
959 TensorEvaluator<EvalRightArgType, Device> m_rightImpl;
960 const Device EIGEN_DEVICE_REF m_device;
961 OutputKernelType m_output_kernel;
962 EvaluatorPointerType m_result;
967template<
typename Indices,
typename LeftArgType,
typename RightArgType,
typename OutputKernelType,
typename Device>
969 public TensorContractionEvaluatorBase<
970 TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> > {
971 typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self;
972 typedef TensorContractionEvaluatorBase<Self> Base;
974 typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
975 typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
976 typedef typename XprType::Index Index;
977 typedef typename XprType::CoeffReturnType CoeffReturnType;
978 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
981 Layout = TensorEvaluator<LeftArgType, Device>::Layout
988 typedef typename internal::conditional<
989 static_cast<int>(Layout) ==
static_cast<int>(
ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType;
990 typedef typename internal::conditional<
991 static_cast<int>(Layout) ==
static_cast<int>(
ColMajor), RightArgType, LeftArgType>::type EvalRightArgType;
993 static const int LDims =
994 internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value;
995 static const int RDims =
996 internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value;
997 static const int ContractDims = internal::array_size<Indices>::value;
999 typedef array<Index, ContractDims> contract_t;
1000 typedef array<Index, LDims - ContractDims> left_nocontract_t;
1001 typedef array<Index, RDims - ContractDims> right_nocontract_t;
1003 static const int NumDims = LDims + RDims - 2 * ContractDims;
1006 typedef DSizes<Index, NumDims> Dimensions;
1008 TensorEvaluator(
const XprType& op,
const Device& device) :
1009 Base(op, device) { }
1011 template <
int Alignment>
1012 void evalProduct(Scalar* buffer)
const {
1013 TENSOR_CONTRACTION_DISPATCH(this->
template evalProductSequential, Alignment, (buffer));
The tensor base class.
Definition TensorForwardDeclarations.h:56
Definition TensorContraction.h:322
const internal::remove_all< typenameLhsXprType::Nested >::type & lhsExpression() const
Definition TensorContraction.h:343
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:27