10#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
11#define EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
16template<
typename Axis,
typename LhsXprType,
typename RhsXprType>
17struct traits<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >
20 typedef typename promote_storage_type<
typename LhsXprType::Scalar,
21 typename RhsXprType::Scalar>::ret Scalar;
22 typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
23 typename traits<RhsXprType>::StorageKind>::ret StorageKind;
24 typedef typename promote_index_type<typename traits<LhsXprType>::Index,
25 typename traits<RhsXprType>::Index>::type
Index;
26 typedef typename LhsXprType::Nested LhsNested;
27 typedef typename RhsXprType::Nested RhsNested;
28 typedef typename remove_reference<LhsNested>::type _LhsNested;
29 typedef typename remove_reference<RhsNested>::type _RhsNested;
30 static const int NumDimensions = traits<LhsXprType>::NumDimensions;
31 static const int Layout = traits<LhsXprType>::Layout;
33 typedef typename conditional<Pointer_type_promotion<typename LhsXprType::Scalar, Scalar>::val,
34 typename traits<LhsXprType>::PointerType,
typename traits<RhsXprType>::PointerType>::type PointerType;
37template<
typename Axis,
typename LhsXprType,
typename RhsXprType>
38struct eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, Eigen::Dense>
40 typedef const TensorConcatenationOp<Axis, LhsXprType, RhsXprType>& type;
43template<
typename Axis,
typename LhsXprType,
typename RhsXprType>
44struct nested<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, 1, typename eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >::type>
46 typedef TensorConcatenationOp<Axis, LhsXprType, RhsXprType> type;
56template <
typename Axis,
typename LhsXprType,
typename RhsXprType>
57class TensorConcatenationOp :
public TensorBase<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, WriteAccessors> {
60 typedef typename internal::traits<TensorConcatenationOp>::Scalar Scalar;
61 typedef typename internal::traits<TensorConcatenationOp>::StorageKind StorageKind;
62 typedef typename internal::traits<TensorConcatenationOp>::Index Index;
63 typedef typename internal::nested<TensorConcatenationOp>::type Nested;
64 typedef typename internal::promote_storage_type<
typename LhsXprType::CoeffReturnType,
65 typename RhsXprType::CoeffReturnType>::ret CoeffReturnType;
68 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp(
const LhsXprType& lhs,
const RhsXprType& rhs, Axis axis)
69 : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_axis(axis) {}
72 const typename internal::remove_all<typename LhsXprType::Nested>::type&
73 lhsExpression()
const {
return m_lhs_xpr; }
76 const typename internal::remove_all<typename RhsXprType::Nested>::type&
77 rhsExpression()
const {
return m_rhs_xpr; }
79 EIGEN_DEVICE_FUNC
const Axis& axis()
const {
return m_axis; }
81 EIGEN_TENSOR_INHERIT_ASSIGNMENT_OPERATORS(TensorConcatenationOp)
83 typename LhsXprType::Nested m_lhs_xpr;
84 typename RhsXprType::Nested m_rhs_xpr;
90template<
typename Axis,
typename LeftArgType,
typename RightArgType,
typename Device>
94 typedef typename XprType::Index
Index;
95 static const int NumDims = internal::array_size<typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value;
96 static const int RightNumDims = internal::array_size<typename TensorEvaluator<RightArgType, Device>::Dimensions>::value;
98 typedef typename XprType::Scalar
Scalar;
100 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
101 typedef StorageMemory<CoeffReturnType, Device> Storage;
102 typedef typename Storage::Type EvaluatorPointerType;
105 PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess &&
106 TensorEvaluator<RightArgType, Device>::PacketAccess,
108 PreferBlockAccess = TensorEvaluator<LeftArgType, Device>::PreferBlockAccess ||
109 TensorEvaluator<RightArgType, Device>::PreferBlockAccess,
110 Layout = TensorEvaluator<LeftArgType, Device>::Layout,
115 typedef internal::TensorBlockNotImplemented TensorBlock;
118 EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device& device)
119 : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device), m_axis(op.axis())
121 EIGEN_STATIC_ASSERT((
static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) ==
static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || NumDims == 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
122 EIGEN_STATIC_ASSERT((NumDims == RightNumDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
123 EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
125 eigen_assert(0 <= m_axis && m_axis < NumDims);
126 const Dimensions& lhs_dims = m_leftImpl.dimensions();
127 const Dimensions& rhs_dims = m_rightImpl.dimensions();
130 for (; i < m_axis; ++i) {
131 eigen_assert(lhs_dims[i] > 0);
132 eigen_assert(lhs_dims[i] == rhs_dims[i]);
133 m_dimensions[i] = lhs_dims[i];
135 eigen_assert(lhs_dims[i] > 0);
136 eigen_assert(rhs_dims[i] > 0);
137 m_dimensions[i] = lhs_dims[i] + rhs_dims[i];
138 for (++i; i < NumDims; ++i) {
139 eigen_assert(lhs_dims[i] > 0);
140 eigen_assert(lhs_dims[i] == rhs_dims[i]);
141 m_dimensions[i] = lhs_dims[i];
145 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
146 m_leftStrides[0] = 1;
147 m_rightStrides[0] = 1;
148 m_outputStrides[0] = 1;
150 for (
int j = 1; j < NumDims; ++j) {
151 m_leftStrides[j] = m_leftStrides[j-1] * lhs_dims[j-1];
152 m_rightStrides[j] = m_rightStrides[j-1] * rhs_dims[j-1];
153 m_outputStrides[j] = m_outputStrides[j-1] * m_dimensions[j-1];
156 m_leftStrides[NumDims - 1] = 1;
157 m_rightStrides[NumDims - 1] = 1;
158 m_outputStrides[NumDims - 1] = 1;
160 for (
int j = NumDims - 2; j >= 0; --j) {
161 m_leftStrides[j] = m_leftStrides[j+1] * lhs_dims[j+1];
162 m_rightStrides[j] = m_rightStrides[j+1] * rhs_dims[j+1];
163 m_outputStrides[j] = m_outputStrides[j+1] * m_dimensions[j+1];
168 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
171 EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(EvaluatorPointerType)
173 m_leftImpl.evalSubExprsIfNeeded(NULL);
174 m_rightImpl.evalSubExprsIfNeeded(NULL);
178 EIGEN_STRONG_INLINE
void cleanup()
180 m_leftImpl.cleanup();
181 m_rightImpl.cleanup();
186 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const
189 array<Index, NumDims> subs;
190 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
191 for (
int i = NumDims - 1; i > 0; --i) {
192 subs[i] = index / m_outputStrides[i];
193 index -= subs[i] * m_outputStrides[i];
197 for (
int i = 0; i < NumDims - 1; ++i) {
198 subs[i] = index / m_outputStrides[i];
199 index -= subs[i] * m_outputStrides[i];
201 subs[NumDims - 1] = index;
204 const Dimensions& left_dims = m_leftImpl.dimensions();
205 if (subs[m_axis] < left_dims[m_axis]) {
207 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
208 left_index = subs[0];
210 for (
int i = 1; i < NumDims; ++i) {
211 left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
214 left_index = subs[NumDims - 1];
216 for (
int i = NumDims - 2; i >= 0; --i) {
217 left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
220 return m_leftImpl.coeff(left_index);
222 subs[m_axis] -= left_dims[m_axis];
223 const Dimensions& right_dims = m_rightImpl.dimensions();
225 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
226 right_index = subs[0];
228 for (
int i = 1; i < NumDims; ++i) {
229 right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
232 right_index = subs[NumDims - 1];
234 for (
int i = NumDims - 2; i >= 0; --i) {
235 right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
238 return m_rightImpl.coeff(right_index);
243 template<
int LoadMode>
244 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const
246 const int packetSize = PacketType<CoeffReturnType, Device>::size;
247 EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
248 eigen_assert(index + packetSize - 1 < dimensions().TotalSize());
250 EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
252 for (
int i = 0; i < packetSize; ++i) {
253 values[i] = coeff(index+i);
255 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
259 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
260 costPerCoeff(
bool vectorized)
const {
261 const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
262 2 * TensorOpCost::MulCost<Index>() +
263 TensorOpCost::DivCost<Index>() +
264 TensorOpCost::ModCost<Index>());
265 const double lhs_size = m_leftImpl.dimensions().TotalSize();
266 const double rhs_size = m_rightImpl.dimensions().TotalSize();
267 return (lhs_size / (lhs_size + rhs_size)) *
268 m_leftImpl.costPerCoeff(vectorized) +
269 (rhs_size / (lhs_size + rhs_size)) *
270 m_rightImpl.costPerCoeff(vectorized) +
271 TensorOpCost(0, 0, compute_cost);
274 EIGEN_DEVICE_FUNC EvaluatorPointerType data()
const {
return NULL; }
276 #ifdef EIGEN_USE_SYCL
278 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void bind(cl::sycl::handler &cgh)
const {
279 m_leftImpl.bind(cgh);
280 m_rightImpl.bind(cgh);
285 Dimensions m_dimensions;
286 array<Index, NumDims> m_outputStrides;
287 array<Index, NumDims> m_leftStrides;
288 array<Index, NumDims> m_rightStrides;
289 TensorEvaluator<LeftArgType, Device> m_leftImpl;
290 TensorEvaluator<RightArgType, Device> m_rightImpl;
295template<
typename Axis,
typename LeftArgType,
typename RightArgType,
typename Device>
297 :
public TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
299 typedef TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> Base;
300 typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType;
301 typedef typename Base::Dimensions Dimensions;
304 PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess &&
305 TensorEvaluator<RightArgType, Device>::PacketAccess,
307 PreferBlockAccess = TensorEvaluator<LeftArgType, Device>::PreferBlockAccess ||
308 TensorEvaluator<RightArgType, Device>::PreferBlockAccess,
309 Layout = TensorEvaluator<LeftArgType, Device>::Layout,
314 typedef internal::TensorBlockNotImplemented TensorBlock;
317 EIGEN_STRONG_INLINE TensorEvaluator(XprType& op,
const Device& device)
320 EIGEN_STATIC_ASSERT((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)), YOU_MADE_A_PROGRAMMING_MISTAKE);
323 typedef typename XprType::Index Index;
324 typedef typename XprType::Scalar Scalar;
325 typedef typename XprType::CoeffReturnType CoeffReturnType;
326 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
328 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
331 array<Index, Base::NumDims> subs;
332 for (
int i = Base::NumDims - 1; i > 0; --i) {
333 subs[i] = index / this->m_outputStrides[i];
334 index -= subs[i] * this->m_outputStrides[i];
338 const Dimensions& left_dims = this->m_leftImpl.dimensions();
339 if (subs[this->m_axis] < left_dims[this->m_axis]) {
340 Index left_index = subs[0];
341 for (
int i = 1; i < Base::NumDims; ++i) {
342 left_index += (subs[i] % left_dims[i]) * this->m_leftStrides[i];
344 return this->m_leftImpl.coeffRef(left_index);
346 subs[this->m_axis] -= left_dims[this->m_axis];
347 const Dimensions& right_dims = this->m_rightImpl.dimensions();
348 Index right_index = subs[0];
349 for (
int i = 1; i < Base::NumDims; ++i) {
350 right_index += (subs[i] % right_dims[i]) * this->m_rightStrides[i];
352 return this->m_rightImpl.coeffRef(right_index);
356 template <
int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
357 void writePacket(Index index,
const PacketReturnType& x)
359 const int packetSize = PacketType<CoeffReturnType, Device>::size;
360 EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
361 eigen_assert(index + packetSize - 1 < this->dimensions().TotalSize());
363 EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
364 internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
365 for (
int i = 0; i < packetSize; ++i) {
366 coeffRef(index+i) = values[i];
The tensor base class.
Definition TensorForwardDeclarations.h:56
Tensor concatenation class.
Definition TensorConcatenation.h:57
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:27