10#ifndef EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
11#define EIGEN_CXX11_TENSOR_TENSOR_STRIDING_H
16template<
typename Str
ides,
typename XprType>
17struct traits<TensorStridingOp<Strides, XprType> > :
public traits<XprType>
19 typedef typename XprType::Scalar Scalar;
20 typedef traits<XprType> XprTraits;
21 typedef typename XprTraits::StorageKind StorageKind;
22 typedef typename XprTraits::Index
Index;
23 typedef typename XprType::Nested Nested;
24 typedef typename remove_reference<Nested>::type _Nested;
25 static const int NumDimensions = XprTraits::NumDimensions;
26 static const int Layout = XprTraits::Layout;
29template<
typename Str
ides,
typename XprType>
30struct eval<TensorStridingOp<Strides, XprType>, Eigen::Dense>
32 typedef const TensorStridingOp<Strides, XprType>& type;
35template<
typename Str
ides,
typename XprType>
36struct nested<TensorStridingOp<Strides, XprType>, 1, typename eval<TensorStridingOp<Strides, XprType> >::type>
38 typedef TensorStridingOp<Strides, XprType> type;
48template <
typename Str
ides,
typename XprType>
49class TensorStridingOp :
public TensorBase<TensorStridingOp<Strides, XprType> > {
51 typedef typename Eigen::internal::traits<TensorStridingOp>::Scalar Scalar;
53 typedef typename XprType::CoeffReturnType CoeffReturnType;
54 typedef typename Eigen::internal::nested<TensorStridingOp>::type Nested;
55 typedef typename Eigen::internal::traits<TensorStridingOp>::StorageKind StorageKind;
56 typedef typename Eigen::internal::traits<TensorStridingOp>::Index Index;
58 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingOp(
const XprType& expr,
const Strides& dims)
59 : m_xpr(expr), m_dims(dims) {}
62 const Strides& strides()
const {
return m_dims; }
65 const typename internal::remove_all<typename XprType::Nested>::type&
66 expression()
const {
return m_xpr; }
69 EIGEN_STRONG_INLINE TensorStridingOp& operator = (
const TensorStridingOp& other)
72 Assign assign(*
this, other);
73 internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
77 template<
typename OtherDerived>
79 EIGEN_STRONG_INLINE TensorStridingOp& operator = (
const OtherDerived& other)
82 Assign assign(*
this, other);
83 internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
88 typename XprType::Nested m_xpr;
94template<
typename Str
ides,
typename ArgType,
typename Device>
98 typedef typename XprType::Index
Index;
99 static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
101 typedef typename XprType::Scalar
Scalar;
102 typedef typename XprType::CoeffReturnType CoeffReturnType;
103 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
104 static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
108 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
109 Layout = TensorEvaluator<ArgType, Device>::Layout,
114 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device&
device)
115 : m_impl(op.expression(),
device)
117 m_dimensions = m_impl.dimensions();
118 for (
int i = 0; i < NumDims; ++i) {
119 m_dimensions[i] = ceilf(
static_cast<float>(m_dimensions[i]) / op.strides()[i]);
122 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
123 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
124 m_outputStrides[0] = 1;
125 m_inputStrides[0] = 1;
126 for (
int i = 1; i < NumDims; ++i) {
127 m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
128 m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
129 m_inputStrides[i-1] *= op.strides()[i-1];
131 m_inputStrides[NumDims-1] *= op.strides()[NumDims-1];
133 m_outputStrides[NumDims-1] = 1;
134 m_inputStrides[NumDims-1] = 1;
135 for (
int i = NumDims - 2; i >= 0; --i) {
136 m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
137 m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
138 m_inputStrides[i+1] *= op.strides()[i+1];
140 m_inputStrides[0] *= op.strides()[0];
144 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
146 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(Scalar* ) {
147 m_impl.evalSubExprsIfNeeded(NULL);
150 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void cleanup() {
154 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const
156 return m_impl.coeff(srcCoeff(index));
159 template<
int LoadMode>
160 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const
162 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
163 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
165 Index inputIndices[] = {0, 0};
166 Index indices[] = {index, index + PacketSize - 1};
167 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
168 for (
int i = NumDims - 1; i > 0; --i) {
169 const Index idx0 = indices[0] / m_outputStrides[i];
170 const Index idx1 = indices[1] / m_outputStrides[i];
171 inputIndices[0] += idx0 * m_inputStrides[i];
172 inputIndices[1] += idx1 * m_inputStrides[i];
173 indices[0] -= idx0 * m_outputStrides[i];
174 indices[1] -= idx1 * m_outputStrides[i];
176 inputIndices[0] += indices[0] * m_inputStrides[0];
177 inputIndices[1] += indices[1] * m_inputStrides[0];
179 for (
int i = 0; i < NumDims - 1; ++i) {
180 const Index idx0 = indices[0] / m_outputStrides[i];
181 const Index idx1 = indices[1] / m_outputStrides[i];
182 inputIndices[0] += idx0 * m_inputStrides[i];
183 inputIndices[1] += idx1 * m_inputStrides[i];
184 indices[0] -= idx0 * m_outputStrides[i];
185 indices[1] -= idx1 * m_outputStrides[i];
187 inputIndices[0] += indices[0] * m_inputStrides[NumDims-1];
188 inputIndices[1] += indices[1] * m_inputStrides[NumDims-1];
190 if (inputIndices[1] - inputIndices[0] == PacketSize - 1) {
191 PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
195 EIGEN_ALIGN_MAX
typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
196 values[0] = m_impl.coeff(inputIndices[0]);
197 values[PacketSize-1] = m_impl.coeff(inputIndices[1]);
198 for (
int i = 1; i < PacketSize-1; ++i) {
199 values[i] = coeff(index+i);
201 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
206 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(
bool vectorized)
const {
207 double compute_cost = (NumDims - 1) * (TensorOpCost::AddCost<Index>() +
208 TensorOpCost::MulCost<Index>() +
209 TensorOpCost::DivCost<Index>()) +
210 TensorOpCost::MulCost<Index>();
214 const int innerDim = (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) ? 0 : (NumDims - 1);
215 return m_impl.costPerCoeff(vectorized && m_inputStrides[innerDim] == 1) +
217 TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
220 EIGEN_DEVICE_FUNC Scalar* data()
const {
return NULL; }
223 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index)
const
225 Index inputIndex = 0;
226 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
227 for (
int i = NumDims - 1; i > 0; --i) {
228 const Index idx = index / m_outputStrides[i];
229 inputIndex += idx * m_inputStrides[i];
230 index -= idx * m_outputStrides[i];
232 inputIndex += index * m_inputStrides[0];
234 for (
int i = 0; i < NumDims - 1; ++i) {
235 const Index idx = index / m_outputStrides[i];
236 inputIndex += idx * m_inputStrides[i];
237 index -= idx * m_outputStrides[i];
239 inputIndex += index * m_inputStrides[NumDims-1];
244 Dimensions m_dimensions;
245 array<Index, NumDims> m_outputStrides;
246 array<Index, NumDims> m_inputStrides;
247 TensorEvaluator<ArgType, Device> m_impl;
252template<
typename Str
ides,
typename ArgType,
typename Device>
254 :
public TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
256 typedef TensorStridingOp<Strides, ArgType> XprType;
257 typedef TensorEvaluator<const XprType, Device> Base;
259 static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
264 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
265 Layout = TensorEvaluator<ArgType, Device>::Layout,
270 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device&
device)
273 typedef typename XprType::Index Index;
274 typedef typename XprType::Scalar Scalar;
275 typedef typename XprType::CoeffReturnType CoeffReturnType;
276 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
277 static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
279 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
281 return this->m_impl.coeffRef(this->srcCoeff(index));
284 template <
int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
285 void writePacket(Index index,
const PacketReturnType& x)
287 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
288 eigen_assert(index+PacketSize-1 < this->dimensions().TotalSize());
290 Index inputIndices[] = {0, 0};
291 Index indices[] = {index, index + PacketSize - 1};
292 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
293 for (
int i = NumDims - 1; i > 0; --i) {
294 const Index idx0 = indices[0] / this->m_outputStrides[i];
295 const Index idx1 = indices[1] / this->m_outputStrides[i];
296 inputIndices[0] += idx0 * this->m_inputStrides[i];
297 inputIndices[1] += idx1 * this->m_inputStrides[i];
298 indices[0] -= idx0 * this->m_outputStrides[i];
299 indices[1] -= idx1 * this->m_outputStrides[i];
301 inputIndices[0] += indices[0] * this->m_inputStrides[0];
302 inputIndices[1] += indices[1] * this->m_inputStrides[0];
304 for (
int i = 0; i < NumDims - 1; ++i) {
305 const Index idx0 = indices[0] / this->m_outputStrides[i];
306 const Index idx1 = indices[1] / this->m_outputStrides[i];
307 inputIndices[0] += idx0 * this->m_inputStrides[i];
308 inputIndices[1] += idx1 * this->m_inputStrides[i];
309 indices[0] -= idx0 * this->m_outputStrides[i];
310 indices[1] -= idx1 * this->m_outputStrides[i];
312 inputIndices[0] += indices[0] * this->m_inputStrides[NumDims-1];
313 inputIndices[1] += indices[1] * this->m_inputStrides[NumDims-1];
315 if (inputIndices[1] - inputIndices[0] == PacketSize - 1) {
316 this->m_impl.template writePacket<Unaligned>(inputIndices[0], x);
319 EIGEN_ALIGN_MAX Scalar values[PacketSize];
320 internal::pstore<Scalar, PacketReturnType>(values, x);
321 this->m_impl.coeffRef(inputIndices[0]) = values[0];
322 this->m_impl.coeffRef(inputIndices[1]) = values[PacketSize-1];
323 for (
int i = 1; i < PacketSize-1; ++i) {
324 this->coeffRef(index+i) = values[i];
Definition TensorAssign.h:56
The tensor base class.
Definition TensorForwardDeclarations.h:29
Tensor striding class.
Definition TensorStriding.h:49
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:27
const Device & device() const
required by sycl in order to construct sycl buffer from raw pointer
Definition TensorEvaluator.h:112