10#ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
11#define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
16template<
typename Str
ides,
typename XprType>
17struct traits<TensorInflationOp<Strides, XprType> > :
public traits<XprType>
19 typedef typename XprType::Scalar Scalar;
20 typedef traits<XprType> XprTraits;
21 typedef typename XprTraits::StorageKind StorageKind;
22 typedef typename XprTraits::Index
Index;
23 typedef typename XprType::Nested Nested;
24 typedef typename remove_reference<Nested>::type _Nested;
25 static const int NumDimensions = XprTraits::NumDimensions;
26 static const int Layout = XprTraits::Layout;
29template<
typename Str
ides,
typename XprType>
30struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense>
32 typedef const TensorInflationOp<Strides, XprType>& type;
35template<
typename Str
ides,
typename XprType>
36struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type>
38 typedef TensorInflationOp<Strides, XprType> type;
48template <
typename Str
ides,
typename XprType>
49class TensorInflationOp :
public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors> {
51 typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar;
53 typedef typename XprType::CoeffReturnType CoeffReturnType;
54 typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested;
55 typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind;
56 typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index;
58 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(
const XprType& expr,
const Strides& strides)
59 : m_xpr(expr), m_strides(strides) {}
62 const Strides& strides()
const {
return m_strides; }
65 const typename internal::remove_all<typename XprType::Nested>::type&
66 expression()
const {
return m_xpr; }
69 typename XprType::Nested m_xpr;
70 const Strides m_strides;
74template<
typename Str
ides,
typename ArgType,
typename Device>
78 typedef typename XprType::Index
Index;
79 static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
81 typedef typename XprType::Scalar
Scalar;
82 typedef typename XprType::CoeffReturnType CoeffReturnType;
83 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
84 static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
88 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
90 Layout = TensorEvaluator<ArgType, Device>::Layout,
95 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device&
device)
96 : m_impl(op.expression(),
device), m_strides(op.strides())
98 m_dimensions = m_impl.dimensions();
100 for (
int i = 0; i < NumDims; ++i) {
101 m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1;
105 for (
int i = 0; i < NumDims; ++i) {
106 m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]);
109 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
110 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
111 m_outputStrides[0] = 1;
112 m_inputStrides[0] = 1;
113 for (
int i = 1; i < NumDims; ++i) {
114 m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
115 m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
118 m_outputStrides[NumDims-1] = 1;
119 m_inputStrides[NumDims-1] = 1;
120 for (
int i = NumDims - 2; i >= 0; --i) {
121 m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
122 m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
127 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
129 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(Scalar* ) {
130 m_impl.evalSubExprsIfNeeded(NULL);
133 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void cleanup() {
139 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool getInputIndex(Index index, Index* inputIndex)
const
141 eigen_assert(index < dimensions().TotalSize());
143 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
144 for (
int i = NumDims - 1; i > 0; --i) {
145 const Index idx = index / m_outputStrides[i];
146 if (idx != idx / m_fastStrides[i] * m_strides[i]) {
149 *inputIndex += idx / m_strides[i] * m_inputStrides[i];
150 index -= idx * m_outputStrides[i];
152 if (index != index / m_fastStrides[0] * m_strides[0]) {
155 *inputIndex += index / m_strides[0];
158 for (
int i = 0; i < NumDims - 1; ++i) {
159 const Index idx = index / m_outputStrides[i];
160 if (idx != idx / m_fastStrides[i] * m_strides[i]) {
163 *inputIndex += idx / m_strides[i] * m_inputStrides[i];
164 index -= idx * m_outputStrides[i];
166 if (index != index / m_fastStrides[NumDims-1] * m_strides[NumDims-1]) {
169 *inputIndex += index / m_strides[NumDims - 1];
174 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const
176 Index inputIndex = 0;
177 if (getInputIndex(index, &inputIndex)) {
178 return m_impl.coeff(inputIndex);
186 template<
int LoadMode>
187 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const
189 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
190 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
192 EIGEN_ALIGN_MAX
typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
193 for (
int i = 0; i < PacketSize; ++i) {
194 values[i] = coeff(index+i);
196 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
200 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(
bool vectorized)
const {
201 const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() +
202 3 * TensorOpCost::MulCost<Index>() +
203 2 * TensorOpCost::AddCost<Index>());
204 const double input_size = m_impl.dimensions().TotalSize();
205 const double output_size = m_dimensions.TotalSize();
206 if (output_size == 0)
207 return TensorOpCost();
208 return m_impl.costPerCoeff(vectorized) +
209 TensorOpCost(
sizeof(CoeffReturnType) * input_size / output_size, 0,
210 compute_cost, vectorized, PacketSize);
213 EIGEN_DEVICE_FUNC Scalar* data()
const {
return NULL; }
216 Dimensions m_dimensions;
217 array<Index, NumDims> m_outputStrides;
218 array<Index, NumDims> m_inputStrides;
219 TensorEvaluator<ArgType, Device> m_impl;
220 const Strides m_strides;
221 array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides;
The tensor base class.
Definition TensorForwardDeclarations.h:29
Tensor inflation class.
Definition TensorInflation.h:49
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:27
const Device & device() const
required by sycl in order to construct sycl buffer from raw pointer
Definition TensorEvaluator.h:112