10#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
11#define EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H
16template<
typename Axis,
typename LhsXprType,
typename RhsXprType>
17struct traits<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >
20 typedef typename promote_storage_type<
typename LhsXprType::Scalar,
21 typename RhsXprType::Scalar>::ret Scalar;
22 typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
23 typename traits<RhsXprType>::StorageKind>::ret StorageKind;
24 typedef typename promote_index_type<typename traits<LhsXprType>::Index,
25 typename traits<RhsXprType>::Index>::type
Index;
26 typedef typename LhsXprType::Nested LhsNested;
27 typedef typename RhsXprType::Nested RhsNested;
28 typedef typename remove_reference<LhsNested>::type _LhsNested;
29 typedef typename remove_reference<RhsNested>::type _RhsNested;
30 static const int NumDimensions = traits<LhsXprType>::NumDimensions;
31 static const int Layout = traits<LhsXprType>::Layout;
35template<
typename Axis,
typename LhsXprType,
typename RhsXprType>
36struct eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, Eigen::Dense>
38 typedef const TensorConcatenationOp<Axis, LhsXprType, RhsXprType>& type;
41template<
typename Axis,
typename LhsXprType,
typename RhsXprType>
42struct nested<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, 1, typename eval<TensorConcatenationOp<Axis, LhsXprType, RhsXprType> >::type>
44 typedef TensorConcatenationOp<Axis, LhsXprType, RhsXprType> type;
54template <
typename Axis,
typename LhsXprType,
typename RhsXprType>
55class TensorConcatenationOp :
public TensorBase<TensorConcatenationOp<Axis, LhsXprType, RhsXprType>, WriteAccessors> {
57 typedef typename internal::traits<TensorConcatenationOp>::Scalar Scalar;
58 typedef typename internal::traits<TensorConcatenationOp>::StorageKind StorageKind;
59 typedef typename internal::traits<TensorConcatenationOp>::Index Index;
60 typedef typename internal::nested<TensorConcatenationOp>::type Nested;
61 typedef typename internal::promote_storage_type<
typename LhsXprType::CoeffReturnType,
62 typename RhsXprType::CoeffReturnType>::ret CoeffReturnType;
65 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp(
const LhsXprType& lhs,
const RhsXprType& rhs, Axis axis)
66 : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_axis(axis) {}
69 const typename internal::remove_all<typename LhsXprType::Nested>::type&
70 lhsExpression()
const {
return m_lhs_xpr; }
73 const typename internal::remove_all<typename RhsXprType::Nested>::type&
74 rhsExpression()
const {
return m_rhs_xpr; }
76 EIGEN_DEVICE_FUNC
const Axis& axis()
const {
return m_axis; }
79 EIGEN_STRONG_INLINE TensorConcatenationOp& operator = (
const TensorConcatenationOp& other)
82 Assign assign(*
this, other);
83 internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
87 template<
typename OtherDerived>
89 EIGEN_STRONG_INLINE TensorConcatenationOp& operator = (
const OtherDerived& other)
92 Assign assign(*
this, other);
93 internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
98 typename LhsXprType::Nested m_lhs_xpr;
99 typename RhsXprType::Nested m_rhs_xpr;
105template<
typename Axis,
typename LeftArgType,
typename RightArgType,
typename Device>
109 typedef typename XprType::Index
Index;
110 static const int NumDims = internal::array_size<typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value;
111 static const int RightNumDims = internal::array_size<typename TensorEvaluator<RightArgType, Device>::Dimensions>::value;
113 typedef typename XprType::Scalar
Scalar;
114 typedef typename XprType::CoeffReturnType CoeffReturnType;
115 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
118 PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
119 Layout = TensorEvaluator<LeftArgType, Device>::Layout,
123 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device&
device)
124 : m_leftImpl(op.lhsExpression(),
device), m_rightImpl(op.rhsExpression(),
device), m_axis(op.axis())
126 EIGEN_STATIC_ASSERT((
static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) ==
static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || NumDims == 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
127 EIGEN_STATIC_ASSERT((NumDims == RightNumDims), YOU_MADE_A_PROGRAMMING_MISTAKE);
128 EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
130 eigen_assert(0 <= m_axis && m_axis < NumDims);
131 const Dimensions& lhs_dims = m_leftImpl.dimensions();
132 const Dimensions& rhs_dims = m_rightImpl.dimensions();
135 for (; i < m_axis; ++i) {
136 eigen_assert(lhs_dims[i] > 0);
137 eigen_assert(lhs_dims[i] == rhs_dims[i]);
138 m_dimensions[i] = lhs_dims[i];
140 eigen_assert(lhs_dims[i] > 0);
141 eigen_assert(rhs_dims[i] > 0);
142 m_dimensions[i] = lhs_dims[i] + rhs_dims[i];
143 for (++i; i < NumDims; ++i) {
144 eigen_assert(lhs_dims[i] > 0);
145 eigen_assert(lhs_dims[i] == rhs_dims[i]);
146 m_dimensions[i] = lhs_dims[i];
150 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
151 m_leftStrides[0] = 1;
152 m_rightStrides[0] = 1;
153 m_outputStrides[0] = 1;
155 for (
int j = 1; j < NumDims; ++j) {
156 m_leftStrides[j] = m_leftStrides[j-1] * lhs_dims[j-1];
157 m_rightStrides[j] = m_rightStrides[j-1] * rhs_dims[j-1];
158 m_outputStrides[j] = m_outputStrides[j-1] * m_dimensions[j-1];
161 m_leftStrides[NumDims - 1] = 1;
162 m_rightStrides[NumDims - 1] = 1;
163 m_outputStrides[NumDims - 1] = 1;
165 for (
int j = NumDims - 2; j >= 0; --j) {
166 m_leftStrides[j] = m_leftStrides[j+1] * lhs_dims[j+1];
167 m_rightStrides[j] = m_rightStrides[j+1] * rhs_dims[j+1];
168 m_outputStrides[j] = m_outputStrides[j+1] * m_dimensions[j+1];
173 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
176 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(Scalar* )
178 m_leftImpl.evalSubExprsIfNeeded(NULL);
179 m_rightImpl.evalSubExprsIfNeeded(NULL);
183 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void cleanup()
185 m_leftImpl.cleanup();
186 m_rightImpl.cleanup();
191 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const
194 array<Index, NumDims> subs;
195 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
196 for (
int i = NumDims - 1; i > 0; --i) {
197 subs[i] = index / m_outputStrides[i];
198 index -= subs[i] * m_outputStrides[i];
202 for (
int i = 0; i < NumDims - 1; ++i) {
203 subs[i] = index / m_outputStrides[i];
204 index -= subs[i] * m_outputStrides[i];
206 subs[NumDims - 1] = index;
209 const Dimensions& left_dims = m_leftImpl.dimensions();
210 if (subs[m_axis] < left_dims[m_axis]) {
212 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
213 left_index = subs[0];
214 for (
int i = 1; i < NumDims; ++i) {
215 left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
218 left_index = subs[NumDims - 1];
219 for (
int i = NumDims - 2; i >= 0; --i) {
220 left_index += (subs[i] % left_dims[i]) * m_leftStrides[i];
223 return m_leftImpl.coeff(left_index);
225 subs[m_axis] -= left_dims[m_axis];
226 const Dimensions& right_dims = m_rightImpl.dimensions();
228 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
229 right_index = subs[0];
230 for (
int i = 1; i < NumDims; ++i) {
231 right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
234 right_index = subs[NumDims - 1];
235 for (
int i = NumDims - 2; i >= 0; --i) {
236 right_index += (subs[i] % right_dims[i]) * m_rightStrides[i];
239 return m_rightImpl.coeff(right_index);
244 template<
int LoadMode>
245 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const
247 const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
248 EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
249 eigen_assert(index + packetSize - 1 < dimensions().TotalSize());
251 EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
252 for (
int i = 0; i < packetSize; ++i) {
253 values[i] = coeff(index+i);
255 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
259 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
260 costPerCoeff(
bool vectorized)
const {
261 const double compute_cost = NumDims * (2 * TensorOpCost::AddCost<Index>() +
262 2 * TensorOpCost::MulCost<Index>() +
263 TensorOpCost::DivCost<Index>() +
264 TensorOpCost::ModCost<Index>());
265 const double lhs_size = m_leftImpl.dimensions().TotalSize();
266 const double rhs_size = m_rightImpl.dimensions().TotalSize();
267 return (lhs_size / (lhs_size + rhs_size)) *
268 m_leftImpl.costPerCoeff(vectorized) +
269 (rhs_size / (lhs_size + rhs_size)) *
270 m_rightImpl.costPerCoeff(vectorized) +
271 TensorOpCost(0, 0, compute_cost);
274 EIGEN_DEVICE_FUNC Scalar* data()
const {
return NULL; }
277 Dimensions m_dimensions;
278 array<Index, NumDims> m_outputStrides;
279 array<Index, NumDims> m_leftStrides;
280 array<Index, NumDims> m_rightStrides;
281 TensorEvaluator<LeftArgType, Device> m_leftImpl;
282 TensorEvaluator<RightArgType, Device> m_rightImpl;
287template<
typename Axis,
typename LeftArgType,
typename RightArgType,
typename Device>
289 :
public TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device>
291 typedef TensorEvaluator<const TensorConcatenationOp<Axis, LeftArgType, RightArgType>, Device> Base;
292 typedef TensorConcatenationOp<Axis, LeftArgType, RightArgType> XprType;
293 typedef typename Base::Dimensions Dimensions;
296 PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
297 Layout = TensorEvaluator<LeftArgType, Device>::Layout,
301 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(XprType& op,
const Device&
device)
304 EIGEN_STATIC_ASSERT((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)), YOU_MADE_A_PROGRAMMING_MISTAKE);
307 typedef typename XprType::Index Index;
308 typedef typename XprType::Scalar Scalar;
309 typedef typename XprType::CoeffReturnType CoeffReturnType;
310 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
312 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
315 array<Index, Base::NumDims> subs;
316 for (
int i = Base::NumDims - 1; i > 0; --i) {
317 subs[i] = index / this->m_outputStrides[i];
318 index -= subs[i] * this->m_outputStrides[i];
322 const Dimensions& left_dims = this->m_leftImpl.dimensions();
323 if (subs[this->m_axis] < left_dims[this->m_axis]) {
324 Index left_index = subs[0];
325 for (
int i = 1; i < Base::NumDims; ++i) {
326 left_index += (subs[i] % left_dims[i]) * this->m_leftStrides[i];
328 return this->m_leftImpl.coeffRef(left_index);
330 subs[this->m_axis] -= left_dims[this->m_axis];
331 const Dimensions& right_dims = this->m_rightImpl.dimensions();
332 Index right_index = subs[0];
333 for (
int i = 1; i < Base::NumDims; ++i) {
334 right_index += (subs[i] % right_dims[i]) * this->m_rightStrides[i];
336 return this->m_rightImpl.coeffRef(right_index);
340 template <
int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
341 void writePacket(Index index,
const PacketReturnType& x)
343 const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
344 EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
345 eigen_assert(index + packetSize - 1 < this->dimensions().TotalSize());
347 EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
348 internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
349 for (
int i = 0; i < packetSize; ++i) {
350 coeffRef(index+i) = values[i];
Definition TensorAssign.h:56
The tensor base class.
Definition TensorForwardDeclarations.h:29
Tensor concatenation class.
Definition TensorConcatenation.h:55
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:27
const Device & device() const
required by sycl in order to construct sycl buffer from raw pointer
Definition TensorEvaluator.h:112