10#ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
11#define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
16template<DenseIndex DimId,
typename XprType>
17struct traits<TensorChippingOp<DimId, XprType> > :
public traits<XprType>
19 typedef typename XprType::Scalar Scalar;
20 typedef traits<XprType> XprTraits;
21 typedef typename XprTraits::StorageKind StorageKind;
22 typedef typename XprTraits::Index
Index;
23 typedef typename XprType::Nested Nested;
24 typedef typename remove_reference<Nested>::type _Nested;
25 static const int NumDimensions = XprTraits::NumDimensions - 1;
26 static const int Layout = XprTraits::Layout;
29template<DenseIndex DimId,
typename XprType>
30struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense>
32 typedef const TensorChippingOp<DimId, XprType>& type;
35template<DenseIndex DimId,
typename XprType>
36struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type>
38 typedef TensorChippingOp<DimId, XprType> type;
41template <DenseIndex DimId>
44 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) {
45 EIGEN_ONLY_USED_FOR_DEBUG(dim);
46 eigen_assert(dim == DimId);
48 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim()
const {
55 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) {
56 eigen_assert(dim >= 0);
58 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim()
const {
62 const DenseIndex actual_dim;
71template <DenseIndex DimId,
typename XprType>
72class TensorChippingOp :
public TensorBase<TensorChippingOp<DimId, XprType> > {
74 typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar;
76 typedef typename XprType::CoeffReturnType CoeffReturnType;
77 typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested;
78 typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
79 typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;
81 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(
const XprType& expr,
const Index offset,
const Index dim)
82 : m_xpr(expr), m_offset(offset), m_dim(dim) {
86 const Index offset()
const {
return m_offset; }
88 const Index dim()
const {
return m_dim.actualDim(); }
91 const typename internal::remove_all<typename XprType::Nested>::type&
92 expression()
const {
return m_xpr; }
95 EIGEN_STRONG_INLINE TensorChippingOp& operator = (
const TensorChippingOp& other)
98 Assign assign(*
this, other);
99 internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
103 template<
typename OtherDerived>
105 EIGEN_STRONG_INLINE TensorChippingOp& operator = (
const OtherDerived& other)
108 Assign assign(*
this, other);
109 internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
114 typename XprType::Nested m_xpr;
115 const Index m_offset;
116 const internal::DimensionId<DimId> m_dim;
121template<DenseIndex DimId,
typename ArgType,
typename Device>
125 static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
126 static const int NumDims = NumInputDims-1;
127 typedef typename XprType::Index
Index;
129 typedef typename XprType::Scalar
Scalar;
130 typedef typename XprType::CoeffReturnType CoeffReturnType;
131 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
132 static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
139 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
140 Layout = TensorEvaluator<ArgType, Device>::Layout,
145 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device&
device)
146 : m_impl(op.expression(),
device), m_dim(op.dim()), m_device(
device)
148 EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
149 eigen_assert(NumInputDims > m_dim.actualDim());
151 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
152 eigen_assert(op.offset() < input_dims[m_dim.actualDim()]);
155 for (
int i = 0; i < NumInputDims; ++i) {
156 if (i != m_dim.actualDim()) {
157 m_dimensions[j] = input_dims[i];
164 if (
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor)) {
165 for (
int i = 0; i < m_dim.actualDim(); ++i) {
166 m_stride *= input_dims[i];
167 m_inputStride *= input_dims[i];
170 for (
int i = NumInputDims-1; i > m_dim.actualDim(); --i) {
171 m_stride *= input_dims[i];
172 m_inputStride *= input_dims[i];
175 m_inputStride *= input_dims[m_dim.actualDim()];
176 m_inputOffset = m_stride * op.offset();
179 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Dimensions& dimensions()
const {
return m_dimensions; }
181 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
bool evalSubExprsIfNeeded(Scalar* ) {
182 m_impl.evalSubExprsIfNeeded(NULL);
186 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void cleanup() {
190 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index)
const
192 return m_impl.coeff(srcCoeff(index));
195 template<
int LoadMode>
196 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index)
const
198 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
199 eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
201 if ((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor) && m_dim.actualDim() == 0) ||
202 (
static_cast<int>(Layout) ==
static_cast<int>(
RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
204 eigen_assert(m_stride == 1);
205 Index inputIndex = index * m_inputStride + m_inputOffset;
206 EIGEN_ALIGN_MAX
typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
207 for (
int i = 0; i < PacketSize; ++i) {
208 values[i] = m_impl.coeff(inputIndex);
209 inputIndex += m_inputStride;
211 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
213 }
else if ((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor) && m_dim.actualDim() == NumInputDims - 1) ||
214 (
static_cast<int>(Layout) ==
static_cast<int>(
RowMajor) && m_dim.actualDim() == 0)) {
216 eigen_assert(m_stride > index);
217 return m_impl.template packet<LoadMode>(index + m_inputOffset);
219 const Index idx = index / m_stride;
220 const Index rem = index - idx * m_stride;
221 if (rem + PacketSize <= m_stride) {
222 Index inputIndex = idx * m_inputStride + m_inputOffset + rem;
223 return m_impl.template packet<LoadMode>(inputIndex);
226 EIGEN_ALIGN_MAX
typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
227 for (
int i = 0; i < PacketSize; ++i) {
228 values[i] = coeff(index);
231 PacketReturnType rslt = internal::pload<PacketReturnType>(values);
237 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
238 costPerCoeff(
bool vectorized)
const {
240 if ((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor) &&
241 m_dim.actualDim() == 0) ||
242 (
static_cast<int>(Layout) ==
static_cast<int>(
RowMajor) &&
243 m_dim.actualDim() == NumInputDims - 1)) {
244 cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
245 }
else if ((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor) &&
246 m_dim.actualDim() == NumInputDims - 1) ||
247 (
static_cast<int>(Layout) ==
static_cast<int>(
RowMajor) &&
248 m_dim.actualDim() == 0)) {
249 cost += TensorOpCost::AddCost<Index>();
251 cost += 3 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() +
252 3 * TensorOpCost::AddCost<Index>();
255 return m_impl.costPerCoeff(vectorized) +
256 TensorOpCost(0, 0, cost, vectorized, PacketSize);
259 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data()
const {
260 CoeffReturnType* result =
const_cast<CoeffReturnType*
>(m_impl.data());
261 if (((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor) && m_dim.actualDim() == NumDims) ||
262 (
static_cast<int>(Layout) ==
static_cast<int>(
RowMajor) && m_dim.actualDim() == 0)) &&
264 return result + m_inputOffset;
271 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index)
const
274 if ((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor) && m_dim.actualDim() == 0) ||
275 (
static_cast<int>(Layout) ==
static_cast<int>(
RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
277 eigen_assert(m_stride == 1);
278 inputIndex = index * m_inputStride + m_inputOffset;
279 }
else if ((
static_cast<int>(Layout) ==
static_cast<int>(
ColMajor) && m_dim.actualDim() == NumInputDims-1) ||
280 (
static_cast<int>(Layout) ==
static_cast<int>(
RowMajor) && m_dim.actualDim() == 0)) {
282 eigen_assert(m_stride > index);
283 inputIndex = index + m_inputOffset;
285 const Index idx = index / m_stride;
286 inputIndex = idx * m_inputStride + m_inputOffset;
287 index -= idx * m_stride;
293 Dimensions m_dimensions;
297 TensorEvaluator<ArgType, Device> m_impl;
298 const internal::DimensionId<DimId> m_dim;
299 const Device& m_device;
304template<DenseIndex DimId,
typename ArgType,
typename Device>
306 :
public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
308 typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base;
309 typedef TensorChippingOp<DimId, ArgType> XprType;
310 static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
311 static const int NumDims = NumInputDims-1;
312 typedef typename XprType::Index Index;
313 typedef DSizes<Index, NumDims> Dimensions;
314 typedef typename XprType::Scalar Scalar;
315 typedef typename XprType::CoeffReturnType CoeffReturnType;
316 typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
317 static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
321 PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
325 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(
const XprType& op,
const Device&
device)
329 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
331 return this->m_impl.coeffRef(this->srcCoeff(index));
334 template <
int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
335 void writePacket(Index index,
const PacketReturnType& x)
337 EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
339 if ((
static_cast<int>(this->Layout) ==
static_cast<int>(
ColMajor) && this->m_dim.actualDim() == 0) ||
340 (
static_cast<int>(this->Layout) ==
static_cast<int>(
RowMajor) && this->m_dim.actualDim() == NumInputDims-1)) {
342 eigen_assert(this->m_stride == 1);
343 EIGEN_ALIGN_MAX
typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
344 internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
345 Index inputIndex = index * this->m_inputStride + this->m_inputOffset;
346 for (
int i = 0; i < PacketSize; ++i) {
347 this->m_impl.coeffRef(inputIndex) = values[i];
348 inputIndex += this->m_inputStride;
350 }
else if ((
static_cast<int>(this->Layout) ==
static_cast<int>(
ColMajor) && this->m_dim.actualDim() == NumInputDims-1) ||
351 (
static_cast<int>(this->Layout) ==
static_cast<int>(
RowMajor) && this->m_dim.actualDim() == 0)) {
353 eigen_assert(this->m_stride > index);
354 this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x);
356 const Index idx = index / this->m_stride;
357 const Index rem = index - idx * this->m_stride;
358 if (rem + PacketSize <= this->m_stride) {
359 const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem;
360 this->m_impl.template writePacket<StoreMode>(inputIndex, x);
363 EIGEN_ALIGN_MAX
typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
364 internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
365 for (
int i = 0; i < PacketSize; ++i) {
366 this->coeffRef(index) = values[i];
Definition TensorAssign.h:56
The tensor base class.
Definition TensorForwardDeclarations.h:29
Definition TensorChipping.h:72
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The tensor evaluator class.
Definition TensorEvaluator.h:27
const Device & device() const
required by sycl in order to construct sycl buffer from raw pointer
Definition TensorEvaluator.h:112