Loading...
Searching...
No Matches
DGMRES.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_DGMRES_H
11#define EIGEN_DGMRES_H
12
13#include <Eigen/Eigenvalues>
14
15namespace Eigen {
16
17template< typename _MatrixType,
19class DGMRES;
20
21namespace internal {
22
23template< typename _MatrixType, typename _Preconditioner>
24struct traits<DGMRES<_MatrixType,_Preconditioner> >
25{
26 typedef _MatrixType MatrixType;
27 typedef _Preconditioner Preconditioner;
28};
29
38template <typename VectorType, typename IndexType>
39void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
40{
41 eigen_assert(vec.size() == perm.size());
42 bool flag;
43 for (Index k = 0; k < ncut; k++)
44 {
45 flag = false;
46 for (Index j = 0; j < vec.size()-1; j++)
47 {
48 if ( vec(perm(j)) < vec(perm(j+1)) )
49 {
50 std::swap(perm(j),perm(j+1));
51 flag = true;
52 }
53 if (!flag) break; // The vector is in sorted order
54 }
55 }
56}
57
58}
100template< typename _MatrixType, typename _Preconditioner>
101class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
102{
103 typedef IterativeSolverBase<DGMRES> Base;
104 using Base::matrix;
105 using Base::m_error;
106 using Base::m_iterations;
107 using Base::m_info;
108 using Base::m_isInitialized;
109 using Base::m_tolerance;
110 public:
111 using Base::_solve_impl;
112 typedef _MatrixType MatrixType;
113 typedef typename MatrixType::Scalar Scalar;
114 typedef typename MatrixType::StorageIndex StorageIndex;
115 typedef typename MatrixType::RealScalar RealScalar;
116 typedef _Preconditioner Preconditioner;
117 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
118 typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix;
119 typedef Matrix<Scalar,Dynamic,1> DenseVector;
120 typedef Matrix<RealScalar,Dynamic,1> DenseRealVector;
121 typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
122
123
125 DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
126
137 template<typename MatrixDerived>
138 explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
139
140 ~DGMRES() {}
141
143 template<typename Rhs,typename Dest>
144 void _solve_with_guess_impl(const Rhs& b, Dest& x) const
145 {
146 bool failed = false;
147 for(Index j=0; j<b.cols(); ++j)
148 {
149 m_iterations = Base::maxIterations();
150 m_error = Base::m_tolerance;
151
152 typename Dest::ColXpr xj(x,j);
153 dgmres(matrix(), b.col(j), xj, Base::m_preconditioner);
154 }
155 m_info = failed ? NumericalIssue
156 : m_error <= Base::m_tolerance ? Success
158 m_isInitialized = true;
159 }
160
162 template<typename Rhs,typename Dest>
163 void _solve_impl(const Rhs& b, MatrixBase<Dest>& x) const
164 {
165 x = b;
166 _solve_with_guess_impl(b,x.derived());
167 }
171 Index restart() { return m_restart; }
172
176 void set_restart(const Index restart) { m_restart=restart; }
177
181 void setEigenv(const Index neig)
182 {
183 m_neig = neig;
184 if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
185 }
186
190 Index deflSize() {return m_r; }
191
195 void setMaxEigenv(const Index maxNeig) { m_maxNeig = maxNeig; }
196
197 protected:
198 // DGMRES algorithm
199 template<typename Rhs, typename Dest>
200 void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
201 // Perform one cycle of GMRES
202 template<typename Dest>
203 Index dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const;
204 // Compute data to use for deflation
205 Index dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const;
206 // Apply deflation to a vector
207 template<typename RhsType, typename DestType>
208 Index dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
209 ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
210 ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
211 // Init data for deflation
212 void dgmresInitDeflation(Index& rows) const;
213 mutable DenseMatrix m_V; // Krylov basis vectors
214 mutable DenseMatrix m_H; // Hessenberg matrix
215 mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied
216 mutable Index m_restart; // Maximum size of the Krylov subspace
217 mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
218 mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
219 mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
220 mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
221 mutable StorageIndex m_neig; //Number of eigenvalues to extract at each restart
222 mutable Index m_r; // Current number of deflated eigenvalues, size of m_U
223 mutable Index m_maxNeig; // Maximum number of eigenvalues to deflate
224 mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
225 mutable bool m_isDeflAllocated;
226 mutable bool m_isDeflInitialized;
227
228 //Adaptive strategy
229 mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
230 mutable bool m_force; // Force the use of deflation at each restart
231
232};
233
239template< typename _MatrixType, typename _Preconditioner>
240template<typename Rhs, typename Dest>
241void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
242 const Preconditioner& precond) const
243{
244 //Initialization
245 Index n = mat.rows();
246 DenseVector r0(n);
247 Index nbIts = 0;
248 m_H.resize(m_restart+1, m_restart);
249 m_Hes.resize(m_restart, m_restart);
250 m_V.resize(n,m_restart+1);
251 //Initial residual vector and intial norm
252 x = precond.solve(x);
253 r0 = rhs - mat * x;
254 RealScalar beta = r0.norm();
255 RealScalar normRhs = rhs.norm();
256 m_error = beta/normRhs;
257 if(m_error < m_tolerance)
258 m_info = Success;
259 else
260 m_info = NoConvergence;
261
262 // Iterative process
263 while (nbIts < m_iterations && m_info == NoConvergence)
264 {
265 dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
266
267 // Compute the new residual vector for the restart
268 if (nbIts < m_iterations && m_info == NoConvergence)
269 r0 = rhs - mat * x;
270 }
271}
272
283template< typename _MatrixType, typename _Preconditioner>
284template<typename Dest>
285Index DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const
286{
287 //Initialization
288 DenseVector g(m_restart+1); // Right hand side of the least square problem
289 g.setZero();
290 g(0) = Scalar(beta);
291 m_V.col(0) = r0/beta;
292 m_info = NoConvergence;
293 std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
294 Index it = 0; // Number of inner iterations
295 Index n = mat.rows();
296 DenseVector tv1(n), tv2(n); //Temporary vectors
297 while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
298 {
299 // Apply preconditioner(s) at right
300 if (m_isDeflInitialized )
301 {
302 dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
303 tv2 = precond.solve(tv1);
304 }
305 else
306 {
307 tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
308 }
309 tv1 = mat * tv2;
310
311 // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
312 Scalar coef;
313 for (Index i = 0; i <= it; ++i)
314 {
315 coef = tv1.dot(m_V.col(i));
316 tv1 = tv1 - coef * m_V.col(i);
317 m_H(i,it) = coef;
318 m_Hes(i,it) = coef;
319 }
320 // Normalize the vector
321 coef = tv1.norm();
322 m_V.col(it+1) = tv1/coef;
323 m_H(it+1, it) = coef;
324// m_Hes(it+1,it) = coef;
325
326 // FIXME Check for happy breakdown
327
328 // Update Hessenberg matrix with Givens rotations
329 for (Index i = 1; i <= it; ++i)
330 {
331 m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
332 }
333 // Compute the new plane rotation
334 gr[it].makeGivens(m_H(it, it), m_H(it+1,it));
335 // Apply the new rotation
336 m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
337 g.applyOnTheLeft(it,it+1, gr[it].adjoint());
338
339 beta = std::abs(g(it+1));
340 m_error = beta/normRhs;
341 // std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
342 it++; nbIts++;
343
344 if (m_error < m_tolerance)
345 {
346 // The method has converged
347 m_info = Success;
348 break;
349 }
350 }
351
352 // Compute the new coefficients by solving the least square problem
353// it++;
354 //FIXME Check first if the matrix is singular ... zero diagonal
355 DenseVector nrs(m_restart);
356 nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it));
357
358 // Form the new solution
359 if (m_isDeflInitialized)
360 {
361 tv1 = m_V.leftCols(it) * nrs;
362 dgmresApplyDeflation(tv1, tv2);
363 x = x + precond.solve(tv2);
364 }
365 else
366 x = x + precond.solve(m_V.leftCols(it) * nrs);
367
368 // Go for a new cycle and compute data for deflation
369 if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
370 dgmresComputeDeflationData(mat, precond, it, m_neig);
371 return 0;
372
373}
374
375
376template< typename _MatrixType, typename _Preconditioner>
377void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
378{
379 m_U.resize(rows, m_maxNeig);
380 m_MU.resize(rows, m_maxNeig);
381 m_T.resize(m_maxNeig, m_maxNeig);
382 m_lambdaN = 0.0;
383 m_isDeflAllocated = true;
384}
385
386template< typename _MatrixType, typename _Preconditioner>
387inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
388{
389 return schurofH.matrixT().diagonal();
390}
391
392template< typename _MatrixType, typename _Preconditioner>
393inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
394{
395 const DenseMatrix& T = schurofH.matrixT();
396 Index it = T.rows();
397 ComplexVector eig(it);
398 Index j = 0;
399 while (j < it-1)
400 {
401 if (T(j+1,j) ==Scalar(0))
402 {
403 eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
404 j++;
405 }
406 else
407 {
408 eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j));
409 eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
410 j++;
411 }
412 }
413 if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
414 return eig;
415}
416
417template< typename _MatrixType, typename _Preconditioner>
418Index DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const
419{
420 // First, find the Schur form of the Hessenberg matrix H
421 typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
422 bool computeU = true;
423 DenseMatrix matrixQ(it,it);
424 matrixQ.setIdentity();
425 schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
426
427 ComplexVector eig(it);
429 eig = this->schurValues(schurofH);
430
431 // Reorder the absolute values of Schur values
432 DenseRealVector modulEig(it);
433 for (Index j=0; j<it; ++j) modulEig(j) = std::abs(eig(j));
434 perm.setLinSpaced(it,0,internal::convert_index<StorageIndex>(it-1));
435 internal::sortWithPermutation(modulEig, perm, neig);
436
437 if (!m_lambdaN)
438 {
439 m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
440 }
441 //Count the real number of extracted eigenvalues (with complex conjugates)
442 Index nbrEig = 0;
443 while (nbrEig < neig)
444 {
445 if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++;
446 else nbrEig += 2;
447 }
448 // Extract the Schur vectors corresponding to the smallest Ritz values
449 DenseMatrix Sr(it, nbrEig);
450 Sr.setZero();
451 for (Index j = 0; j < nbrEig; j++)
452 {
453 Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
454 }
455
456 // Form the Schur vectors of the initial matrix using the Krylov basis
457 DenseMatrix X;
458 X = m_V.leftCols(it) * Sr;
459 if (m_r)
460 {
461 // Orthogonalize X against m_U using modified Gram-Schmidt
462 for (Index j = 0; j < nbrEig; j++)
463 for (Index k =0; k < m_r; k++)
464 X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k);
465 }
466
467 // Compute m_MX = A * M^-1 * X
468 Index m = m_V.rows();
469 if (!m_isDeflAllocated)
470 dgmresInitDeflation(m);
471 DenseMatrix MX(m, nbrEig);
472 DenseVector tv1(m);
473 for (Index j = 0; j < nbrEig; j++)
474 {
475 tv1 = mat * X.col(j);
476 MX.col(j) = precond.solve(tv1);
477 }
478
479 //Update m_T = [U'MU U'MX; X'MU X'MX]
480 m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
481 if(m_r)
482 {
483 m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
484 m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
485 }
486
487 // Save X into m_U and m_MX in m_MU
488 for (Index j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
489 for (Index j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
490 // Increase the size of the invariant subspace
491 m_r += nbrEig;
492
493 // Factorize m_T into m_luT
494 m_luT.compute(m_T.topLeftCorner(m_r, m_r));
495
496 //FIXME CHeck if the factorization was correctly done (nonsingular matrix)
497 m_isDeflInitialized = true;
498 return 0;
499}
500template<typename _MatrixType, typename _Preconditioner>
501template<typename RhsType, typename DestType>
502Index DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
503{
504 DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
505 y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
506 return 0;
507}
508
509} // end namespace Eigen
510#endif
A Restarted GMRES with deflation. This class implements a modification of the GMRES solver for sparse...
Definition DGMRES.h:102
DGMRES()
Definition DGMRES.h:125
void dgmres(const MatrixType &mat, const Rhs &rhs, Dest &x, const Preconditioner &precond) const
Perform several cycles of restarted GMRES with modified Gram Schmidt,.
Definition DGMRES.h:241
void setMaxEigenv(const Index maxNeig)
Definition DGMRES.h:195
DGMRES(const EigenBase< MatrixDerived > &A)
Definition DGMRES.h:138
Index dgmresCycle(const MatrixType &mat, const Preconditioner &precond, Dest &x, DenseVector &r0, RealScalar &beta, const RealScalar &normRhs, Index &nbIts) const
Perform one restart cycle of DGMRES.
Definition DGMRES.h:285
Index deflSize()
Definition DGMRES.h:190
void set_restart(const Index restart)
Definition DGMRES.h:176
void setEigenv(const Index neig)
Definition DGMRES.h:181
Index restart()
Definition DGMRES.h:171
Derived & setZero(Index size)
NumericalIssue
Namespace containing all symbols from the Eigen library.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_imag_op< typename Derived::Scalar >, const Derived > imag(const Eigen::ArrayBase< Derived > &x)
const int Dynamic