Eigen  3.3.9
 
Loading...
Searching...
No Matches
RealSchur.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_REAL_SCHUR_H
12#define EIGEN_REAL_SCHUR_H
13
14#include "./HessenbergDecomposition.h"
15
16namespace Eigen {
17
54template<typename _MatrixType> class RealSchur
55{
56 public:
57 typedef _MatrixType MatrixType;
58 enum {
59 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
60 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
61 Options = MatrixType::Options,
62 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
63 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
64 };
65 typedef typename MatrixType::Scalar Scalar;
66 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
68
71
83 explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
84 : m_matT(size, size),
85 m_matU(size, size),
86 m_workspaceVector(size),
87 m_hess(size),
88 m_isInitialized(false),
89 m_matUisUptodate(false),
90 m_maxIters(-1)
91 { }
92
103 template<typename InputType>
104 explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
105 : m_matT(matrix.rows(),matrix.cols()),
106 m_matU(matrix.rows(),matrix.cols()),
107 m_workspaceVector(matrix.rows()),
108 m_hess(matrix.rows()),
109 m_isInitialized(false),
110 m_matUisUptodate(false),
111 m_maxIters(-1)
112 {
113 compute(matrix.derived(), computeU);
114 }
115
127 const MatrixType& matrixU() const
128 {
129 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
130 eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
131 return m_matU;
132 }
133
144 const MatrixType& matrixT() const
145 {
146 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
147 return m_matT;
148 }
149
169 template<typename InputType>
170 RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
171
189 template<typename HessMatrixType, typename OrthMatrixType>
190 RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
196 {
197 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
198 return m_info;
199 }
200
207 {
208 m_maxIters = maxIters;
209 return *this;
210 }
211
214 {
215 return m_maxIters;
216 }
217
223 static const int m_maxIterationsPerRow = 40;
224
225 private:
226
227 MatrixType m_matT;
228 MatrixType m_matU;
229 ColumnVectorType m_workspaceVector;
231 ComputationInfo m_info;
232 bool m_isInitialized;
233 bool m_matUisUptodate;
234 Index m_maxIters;
235
236 typedef Matrix<Scalar,3,1> Vector3s;
237
238 Scalar computeNormOfT();
239 Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero);
240 void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
241 void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
242 void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
243 void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
244};
245
246
247template<typename MatrixType>
248template<typename InputType>
250{
251 const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();
252
253 eigen_assert(matrix.cols() == matrix.rows());
254 Index maxIters = m_maxIters;
255 if (maxIters == -1)
256 maxIters = m_maxIterationsPerRow * matrix.rows();
257
258 Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
259 if(scale<considerAsZero)
260 {
261 m_matT.setZero(matrix.rows(),matrix.cols());
262 if(computeU)
263 m_matU.setIdentity(matrix.rows(),matrix.cols());
264 m_info = Success;
265 m_isInitialized = true;
266 m_matUisUptodate = computeU;
267 return *this;
268 }
269
270 // Step 1. Reduce to Hessenberg form
271 m_hess.compute(matrix.derived()/scale);
272
273 // Step 2. Reduce to real Schur form
274 computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
275
276 m_matT *= scale;
277
278 return *this;
279}
280template<typename MatrixType>
281template<typename HessMatrixType, typename OrthMatrixType>
282RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
283{
284 using std::abs;
285
286 m_matT = matrixH;
287 if(computeU)
288 m_matU = matrixQ;
289
290 Index maxIters = m_maxIters;
291 if (maxIters == -1)
292 maxIters = m_maxIterationsPerRow * matrixH.rows();
293 m_workspaceVector.resize(m_matT.cols());
294 Scalar* workspace = &m_workspaceVector.coeffRef(0);
295
296 // The matrix m_matT is divided in three parts.
297 // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
298 // Rows il,...,iu is the part we are working on (the active window).
299 // Rows iu+1,...,end are already brought in triangular form.
300 Index iu = m_matT.cols() - 1;
301 Index iter = 0; // iteration count for current eigenvalue
302 Index totalIter = 0; // iteration count for whole matrix
303 Scalar exshift(0); // sum of exceptional shifts
304 Scalar norm = computeNormOfT();
305 // sub-diagonal entries smaller than considerAsZero will be treated as zero.
306 // We use eps^2 to enable more precision in small eigenvalues.
307 Scalar considerAsZero = numext::maxi<Scalar>( norm * numext::abs2(NumTraits<Scalar>::epsilon()),
308 (std::numeric_limits<Scalar>::min)() );
309
310 if(norm!=Scalar(0))
311 {
312 while (iu >= 0)
313 {
314 Index il = findSmallSubdiagEntry(iu,considerAsZero);
315
316 // Check for convergence
317 if (il == iu) // One root found
318 {
319 m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
320 if (iu > 0)
321 m_matT.coeffRef(iu, iu-1) = Scalar(0);
322 iu--;
323 iter = 0;
324 }
325 else if (il == iu-1) // Two roots found
326 {
327 splitOffTwoRows(iu, computeU, exshift);
328 iu -= 2;
329 iter = 0;
330 }
331 else // No convergence yet
332 {
333 // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
334 Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo;
335 computeShift(iu, iter, exshift, shiftInfo);
336 iter = iter + 1;
337 totalIter = totalIter + 1;
338 if (totalIter > maxIters) break;
339 Index im;
340 initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
341 performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
342 }
343 }
344 }
345 if(totalIter <= maxIters)
346 m_info = Success;
347 else
348 m_info = NoConvergence;
349
350 m_isInitialized = true;
351 m_matUisUptodate = computeU;
352 return *this;
353}
354
356template<typename MatrixType>
357inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
358{
359 const Index size = m_matT.cols();
360 // FIXME to be efficient the following would requires a triangular reduxion code
361 // Scalar norm = m_matT.upper().cwiseAbs().sum()
362 // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
363 Scalar norm(0);
364 for (Index j = 0; j < size; ++j)
365 norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
366 return norm;
367}
368
370template<typename MatrixType>
371inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero)
372{
373 using std::abs;
374 Index res = iu;
375 while (res > 0)
376 {
377 Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
378
379 s = numext::maxi<Scalar>(s * NumTraits<Scalar>::epsilon(), considerAsZero);
380
381 if (abs(m_matT.coeff(res,res-1)) <= s)
382 break;
383 res--;
384 }
385 return res;
386}
387
389template<typename MatrixType>
390inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
391{
392 using std::sqrt;
393 using std::abs;
394 const Index size = m_matT.cols();
395
396 // The eigenvalues of the 2x2 matrix [a b; c d] are
397 // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
398 Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
399 Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
400 m_matT.coeffRef(iu,iu) += exshift;
401 m_matT.coeffRef(iu-1,iu-1) += exshift;
402
403 if (q >= Scalar(0)) // Two real eigenvalues
404 {
405 Scalar z = sqrt(abs(q));
407 if (p >= Scalar(0))
408 rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
409 else
410 rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
411
412 m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
413 m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
414 m_matT.coeffRef(iu, iu-1) = Scalar(0);
415 if (computeU)
416 m_matU.applyOnTheRight(iu-1, iu, rot);
417 }
418
419 if (iu > 1)
420 m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
421}
422
424template<typename MatrixType>
425inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
426{
427 using std::sqrt;
428 using std::abs;
429 shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
430 shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
431 shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
432
433 // Wilkinson's original ad hoc shift
434 if (iter == 10)
435 {
436 exshift += shiftInfo.coeff(0);
437 for (Index i = 0; i <= iu; ++i)
438 m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
439 Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
440 shiftInfo.coeffRef(0) = Scalar(0.75) * s;
441 shiftInfo.coeffRef(1) = Scalar(0.75) * s;
442 shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
443 }
444
445 // MATLAB's new ad hoc shift
446 if (iter == 30)
447 {
448 Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
449 s = s * s + shiftInfo.coeff(2);
450 if (s > Scalar(0))
451 {
452 s = sqrt(s);
453 if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
454 s = -s;
455 s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
456 s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
457 exshift += s;
458 for (Index i = 0; i <= iu; ++i)
459 m_matT.coeffRef(i,i) -= s;
460 shiftInfo.setConstant(Scalar(0.964));
461 }
462 }
463}
464
466template<typename MatrixType>
467inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
468{
469 using std::abs;
470 Vector3s& v = firstHouseholderVector; // alias to save typing
471
472 for (im = iu-2; im >= il; --im)
473 {
474 const Scalar Tmm = m_matT.coeff(im,im);
475 const Scalar r = shiftInfo.coeff(0) - Tmm;
476 const Scalar s = shiftInfo.coeff(1) - Tmm;
477 v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
478 v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
479 v.coeffRef(2) = m_matT.coeff(im+2,im+1);
480 if (im == il) {
481 break;
482 }
483 const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
484 const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
485 if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
486 break;
487 }
488}
489
491template<typename MatrixType>
492inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
493{
494 eigen_assert(im >= il);
495 eigen_assert(im <= iu-2);
496
497 const Index size = m_matT.cols();
498
499 for (Index k = im; k <= iu-2; ++k)
500 {
501 bool firstIteration = (k == im);
502
503 Vector3s v;
504 if (firstIteration)
505 v = firstHouseholderVector;
506 else
507 v = m_matT.template block<3,1>(k,k-1);
508
509 Scalar tau, beta;
511 v.makeHouseholder(ess, tau, beta);
512
513 if (beta != Scalar(0)) // if v is not zero
514 {
515 if (firstIteration && k > il)
516 m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
517 else if (!firstIteration)
518 m_matT.coeffRef(k,k-1) = beta;
519
520 // These Householder transformations form the O(n^3) part of the algorithm
521 m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
522 m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
523 if (computeU)
524 m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
525 }
526 }
527
528 Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
529 Scalar tau, beta;
531 v.makeHouseholder(ess, tau, beta);
532
533 if (beta != Scalar(0)) // if v is not zero
534 {
535 m_matT.coeffRef(iu-1, iu-2) = beta;
536 m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
537 m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
538 if (computeU)
539 m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
540 }
541
542 // clean up pollution due to round-off errors
543 for (Index i = im+2; i <= iu; ++i)
544 {
545 m_matT.coeffRef(i,i-2) = Scalar(0);
546 if (i > im+2)
547 m_matT.coeffRef(i,i-3) = Scalar(0);
548 }
549}
550
551} // end namespace Eigen
552
553#endif // EIGEN_REAL_SCHUR_H
Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation.
Definition HessenbergDecomposition.h:58
Rotation given by a cosine-sine pair.
Definition Jacobi.h:35
void makeGivens(const Scalar &p, const Scalar &q, Scalar *r=0)
Definition Jacobi.h:148
void makeHouseholder(EssentialPart &essential, Scalar &tau, RealScalar &beta) const
Definition Householder.h:65
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:180
Performs a real Schur decomposition of a square matrix.
Definition RealSchur.h:55
RealSchur & compute(const EigenBase< InputType > &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
ComputationInfo info() const
Reports whether previous computation was successful.
Definition RealSchur.h:195
const MatrixType & matrixU() const
Returns the orthogonal matrix in the Schur decomposition.
Definition RealSchur.h:127
static const int m_maxIterationsPerRow
Maximum number of iterations per row.
Definition RealSchur.h:223
RealSchur(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Definition RealSchur.h:83
Eigen::Index Index
Definition RealSchur.h:67
const MatrixType & matrixT() const
Returns the quasi-triangular matrix in the Schur decomposition.
Definition RealSchur.h:144
Index getMaxIterations()
Returns the maximum number of iterations.
Definition RealSchur.h:213
RealSchur & computeFromHessenberg(const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU)
Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T.
RealSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition RealSchur.h:206
RealSchur(const EigenBase< InputType > &matrix, bool computeU=true)
Constructor; computes real Schur decomposition of given matrix.
Definition RealSchur.h:104
ComputationInfo
Definition Constants.h:430
@ Success
Definition Constants.h:432
@ NoConvergence
Definition Constants.h:436
Namespace containing all symbols from the Eigen library.
Definition A05_PortingFrom2To3.dox:1
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived > sqrt(const Eigen::ArrayBase< Derived > &x)
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs_op< typename Derived::Scalar >, const Derived > abs(const Eigen::ArrayBase< Derived > &x)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:65
const int Dynamic
Definition Constants.h:21
Definition EigenBase.h:30
Index cols() const
Definition EigenBase.h:62
Derived & derived()
Definition EigenBase.h:45
Index rows() const
Definition EigenBase.h:59