Eigen  3.3.9
 
Loading...
Searching...
No Matches
ProductEvaluators.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
6// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12
13#ifndef EIGEN_PRODUCTEVALUATORS_H
14#define EIGEN_PRODUCTEVALUATORS_H
15
16namespace Eigen {
17
18namespace internal {
19
28template<typename Lhs, typename Rhs, int Options>
29struct evaluator<Product<Lhs, Rhs, Options> >
30 : public product_evaluator<Product<Lhs, Rhs, Options> >
31{
32 typedef Product<Lhs, Rhs, Options> XprType;
33 typedef product_evaluator<XprType> Base;
34
35 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {}
36};
37
38// Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B"
39// TODO we should apply that rule only if that's really helpful
40template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
41struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
42 const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
43 const Product<Lhs, Rhs, DefaultProduct> > >
44{
45 static const bool value = true;
46};
47template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
48struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
49 const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
50 const Product<Lhs, Rhs, DefaultProduct> > >
51 : public evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> >
52{
53 typedef CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
54 const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
55 const Product<Lhs, Rhs, DefaultProduct> > XprType;
56 typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base;
57
58 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
59 : Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs())
60 {}
61};
62
63
64template<typename Lhs, typename Rhs, int DiagIndex>
65struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
66 : public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> >
67{
68 typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
69 typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
70
71 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
72 : Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
73 Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
74 xpr.index() ))
75 {}
76};
77
78
79// Helper class to perform a matrix product with the destination at hand.
80// Depending on the sizes of the factors, there are different evaluation strategies
81// as controlled by internal::product_type.
82template< typename Lhs, typename Rhs,
83 typename LhsShape = typename evaluator_traits<Lhs>::Shape,
84 typename RhsShape = typename evaluator_traits<Rhs>::Shape,
85 int ProductType = internal::product_type<Lhs,Rhs>::value>
86struct generic_product_impl;
87
88template<typename Lhs, typename Rhs>
89struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct> > {
90 static const bool value = true;
91};
92
93// This is the default evaluator implementation for products:
94// It creates a temporary and call generic_product_impl
95template<typename Lhs, typename Rhs, int Options, int ProductTag, typename LhsShape, typename RhsShape>
96struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsShape>
97 : public evaluator<typename Product<Lhs, Rhs, Options>::PlainObject>
98{
99 typedef Product<Lhs, Rhs, Options> XprType;
100 typedef typename XprType::PlainObject PlainObject;
101 typedef evaluator<PlainObject> Base;
102 enum {
103 Flags = Base::Flags | EvalBeforeNestingBit
104 };
105
106 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
107 explicit product_evaluator(const XprType& xpr)
108 : m_result(xpr.rows(), xpr.cols())
109 {
110 ::new (static_cast<Base*>(this)) Base(m_result);
111
112// FIXME shall we handle nested_eval here?,
113// if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.)
114// typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
115// typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
116// typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
117// typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
118//
119// const LhsNested lhs(xpr.lhs());
120// const RhsNested rhs(xpr.rhs());
121//
122// generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);
123
124 generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
125 }
126
127protected:
128 PlainObject m_result;
129};
130
131// The following three shortcuts are enabled only if the scalar types match excatly.
132// TODO: we could enable them for different scalar types when the product is not vectorized.
133
134// Dense = Product
135template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
136struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scalar,Scalar>, Dense2Dense,
137 typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
138{
139 typedef Product<Lhs,Rhs,Options> SrcXprType;
140 static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
141 void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
142 {
143 Index dstRows = src.rows();
144 Index dstCols = src.cols();
145 if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
146 dst.resize(dstRows, dstCols);
147 // FIXME shall we handle nested_eval here?
148 generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
149 }
150};
151
152// Dense += Product
153template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
154struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<Scalar,Scalar>, Dense2Dense,
155 typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
156{
157 typedef Product<Lhs,Rhs,Options> SrcXprType;
158 static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
159 void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,Scalar> &)
160 {
161 eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
162 // FIXME shall we handle nested_eval here?
163 generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
164 }
165};
166
167// Dense -= Product
168template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
169struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::sub_assign_op<Scalar,Scalar>, Dense2Dense,
170 typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
171{
172 typedef Product<Lhs,Rhs,Options> SrcXprType;
173 static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
174 void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,Scalar> &)
175 {
176 eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
177 // FIXME shall we handle nested_eval here?
178 generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
179 }
180};
181
182
183// Dense ?= scalar * Product
184// TODO we should apply that rule if that's really helpful
185// for instance, this is not good for inner products
186template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain>
187struct Assignment<DstXprType, CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
188 const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense>
189{
190 typedef CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>,
191 const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
192 const Product<Lhs,Rhs,DefaultProduct> > SrcXprType;
193 static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
194 void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func)
195 {
196 call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func);
197 }
198};
199
200//----------------------------------------
201// Catch "Dense ?= xpr + Product<>" expression to save one temporary
202// FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct
203
204template<typename OtherXpr, typename Lhs, typename Rhs>
205struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
206 const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
207 static const bool value = true;
208};
209
210template<typename OtherXpr, typename Lhs, typename Rhs>
211struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_difference_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
212 const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
213 static const bool value = true;
214};
215
216template<typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2>
217struct assignment_from_xpr_op_product
218{
219 template<typename SrcXprType, typename InitialFunc>
220 static EIGEN_STRONG_INLINE
221 void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/)
222 {
223 call_assignment_no_alias(dst, src.lhs(), Func1());
224 call_assignment_no_alias(dst, src.rhs(), Func2());
225 }
226};
227
228#define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \
229 template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \
230 struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<OtherScalar,ProdScalar>, const OtherXpr, \
231 const Product<Lhs,Rhs,DefaultProduct> >, internal::ASSIGN_OP<DstScalar,SrcScalar>, Dense2Dense> \
232 : assignment_from_xpr_op_product<DstXprType, OtherXpr, Product<Lhs,Rhs,DefaultProduct>, internal::ASSIGN_OP<DstScalar,OtherScalar>, internal::ASSIGN_OP2<DstScalar,ProdScalar> > \
233 {}
234
235EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_sum_op,add_assign_op);
236EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op);
237EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op);
238
239EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_difference_op,sub_assign_op);
240EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op);
241EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op);
242
243//----------------------------------------
244
245template<typename Lhs, typename Rhs>
246struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
247{
248 template<typename Dst>
249 static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
250 {
251 dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
252 }
253
254 template<typename Dst>
255 static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
256 {
257 dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
258 }
259
260 template<typename Dst>
261 static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
262 { dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
263};
264
265
266/***********************************************************************
267* Implementation of outer dense * dense vector product
268***********************************************************************/
269
270// Column major result
271template<typename Dst, typename Lhs, typename Rhs, typename Func>
272void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&)
273{
274 evaluator<Rhs> rhsEval(rhs);
275 typename nested_eval<Lhs,Rhs::SizeAtCompileTime>::type actual_lhs(lhs);
276 // FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored
277 // FIXME not very good if rhs is real and lhs complex while alpha is real too
278 const Index cols = dst.cols();
279 for (Index j=0; j<cols; ++j)
280 func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs);
281}
282
283// Row major result
284template<typename Dst, typename Lhs, typename Rhs, typename Func>
285void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&)
286{
287 evaluator<Lhs> lhsEval(lhs);
288 typename nested_eval<Rhs,Lhs::SizeAtCompileTime>::type actual_rhs(rhs);
289 // FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored
290 // FIXME not very good if lhs is real and rhs complex while alpha is real too
291 const Index rows = dst.rows();
292 for (Index i=0; i<rows; ++i)
293 func(dst.row(i), lhsEval.coeff(i,Index(0)) * actual_rhs);
294}
295
296template<typename Lhs, typename Rhs>
297struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
298{
299 template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
300 typedef typename Product<Lhs,Rhs>::Scalar Scalar;
301
302 // TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
303 struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
304 struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
305 struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
306 struct adds {
307 Scalar m_scale;
308 explicit adds(const Scalar& s) : m_scale(s) {}
309 template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
310 dst.const_cast_derived() += m_scale * src;
311 }
312 };
313
314 template<typename Dst>
315 static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
316 {
317 internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>());
318 }
319
320 template<typename Dst>
321 static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
322 {
323 internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>());
324 }
325
326 template<typename Dst>
327 static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
328 {
329 internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>());
330 }
331
332 template<typename Dst>
333 static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
334 {
335 internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>());
336 }
337
338};
339
340
341// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
342template<typename Lhs, typename Rhs, typename Derived>
343struct generic_product_impl_base
344{
345 typedef typename Product<Lhs,Rhs>::Scalar Scalar;
346
347 template<typename Dst>
348 static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
349 { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); }
350
351 template<typename Dst>
352 static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
353 { scaleAndAddTo(dst,lhs, rhs, Scalar(1)); }
354
355 template<typename Dst>
356 static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
357 { scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); }
358
359 template<typename Dst>
360 static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
361 { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); }
362
363};
364
365template<typename Lhs, typename Rhs>
366struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
367 : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
368{
369 typedef typename nested_eval<Lhs,1>::type LhsNested;
370 typedef typename nested_eval<Rhs,1>::type RhsNested;
371 typedef typename Product<Lhs,Rhs>::Scalar Scalar;
372 enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
373 typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType;
374
375 template<typename Dest>
376 static EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
377 {
378 LhsNested actual_lhs(lhs);
379 RhsNested actual_rhs(rhs);
380 internal::gemv_dense_selector<Side,
381 (int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
382 bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
383 >::run(actual_lhs, actual_rhs, dst, alpha);
384 }
385};
386
387template<typename Lhs, typename Rhs>
388struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
389{
390 typedef typename Product<Lhs,Rhs>::Scalar Scalar;
391
392 template<typename Dst>
393 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
394 {
395 // Same as: dst.noalias() = lhs.lazyProduct(rhs);
396 // but easier on the compiler side
397 call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op<typename Dst::Scalar,Scalar>());
398 }
399
400 template<typename Dst>
401 static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
402 {
403 // dst.noalias() += lhs.lazyProduct(rhs);
404 call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op<typename Dst::Scalar,Scalar>());
405 }
406
407 template<typename Dst>
408 static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
409 {
410 // dst.noalias() -= lhs.lazyProduct(rhs);
411 call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar,Scalar>());
412 }
413
414 // Catch "dst {,+,-}= (s*A)*B" and evaluate it lazily by moving out the scalar factor:
415 // dst {,+,-}= s * (A.lazyProduct(B))
416 // This is a huge benefit for heap-allocated matrix types as it save one costly allocation.
417 // For them, this strategy is also faster than simply by-passing the heap allocation through
418 // stack allocation.
419 // For fixed sizes matrices, this is less obvious, it is sometimes x2 faster, but sometimes x3 slower,
420 // and the behavior depends also a lot on the compiler... so let's be conservative and enable them for dynamic-size only,
421 // that is when coming from generic_product_impl<...,GemmProduct> in file GeneralMatrixMatrix.h
422 template<typename Dst, typename Scalar1, typename Scalar2, typename Plain1, typename Xpr2, typename Func>
423 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
424 void eval_dynamic(Dst& dst, const CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
425 const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>, Xpr2>& lhs, const Rhs& rhs, const Func &func)
426 {
427 call_assignment_no_alias(dst, lhs.lhs().functor().m_other * lhs.rhs().lazyProduct(rhs), func);
428 }
429
430 // Here, we we always have LhsT==Lhs, but we need to make it a template type to make the above
431 // overload more specialized.
432 template<typename Dst, typename LhsT, typename Func>
433 static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
434 void eval_dynamic(Dst& dst, const LhsT& lhs, const Rhs& rhs, const Func &func)
435 {
436 call_assignment_no_alias(dst, lhs.lazyProduct(rhs), func);
437 }
438
439
440// template<typename Dst>
441// static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
442// { dst.noalias() += alpha * lhs.lazyProduct(rhs); }
443};
444
445// This specialization enforces the use of a coefficient-based evaluation strategy
446template<typename Lhs, typename Rhs>
447struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode>
448 : generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {};
449
450// Case 2: Evaluate coeff by coeff
451//
452// This is mostly taken from CoeffBasedProduct.h
453// The main difference is that we add an extra argument to the etor_product_*_impl::run() function
454// for the inner dimension of the product, because evaluator object do not know their size.
455
456template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
457struct etor_product_coeff_impl;
458
459template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
460struct etor_product_packet_impl;
461
462template<typename Lhs, typename Rhs, int ProductTag>
463struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape>
464 : evaluator_base<Product<Lhs, Rhs, LazyProduct> >
465{
466 typedef Product<Lhs, Rhs, LazyProduct> XprType;
467 typedef typename XprType::Scalar Scalar;
468 typedef typename XprType::CoeffReturnType CoeffReturnType;
469
470 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
471 explicit product_evaluator(const XprType& xpr)
472 : m_lhs(xpr.lhs()),
473 m_rhs(xpr.rhs()),
474 m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that!
475 m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed,
476 // or perhaps declare them on the fly on the packet method... We have experiment to check what's best.
477 m_innerDim(xpr.lhs().cols())
478 {
479 EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
480 EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::AddCost);
481 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
482#if 0
483 std::cerr << "LhsOuterStrideBytes= " << LhsOuterStrideBytes << "\n";
484 std::cerr << "RhsOuterStrideBytes= " << RhsOuterStrideBytes << "\n";
485 std::cerr << "LhsAlignment= " << LhsAlignment << "\n";
486 std::cerr << "RhsAlignment= " << RhsAlignment << "\n";
487 std::cerr << "CanVectorizeLhs= " << CanVectorizeLhs << "\n";
488 std::cerr << "CanVectorizeRhs= " << CanVectorizeRhs << "\n";
489 std::cerr << "CanVectorizeInner= " << CanVectorizeInner << "\n";
490 std::cerr << "EvalToRowMajor= " << EvalToRowMajor << "\n";
491 std::cerr << "Alignment= " << Alignment << "\n";
492 std::cerr << "Flags= " << Flags << "\n";
493#endif
494 }
495
496 // Everything below here is taken from CoeffBasedProduct.h
497
498 typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
499 typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
500
501 typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
502 typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
503
504 typedef evaluator<LhsNestedCleaned> LhsEtorType;
505 typedef evaluator<RhsNestedCleaned> RhsEtorType;
506
507 enum {
508 RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
509 ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
510 InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
511 MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
512 MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime
513 };
514
515 typedef typename find_best_packet<Scalar,RowsAtCompileTime>::type LhsVecPacketType;
516 typedef typename find_best_packet<Scalar,ColsAtCompileTime>::type RhsVecPacketType;
517
518 enum {
519
520 LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
521 RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
522 CoeffReadCost = InnerSize==0 ? NumTraits<Scalar>::ReadCost
523 : InnerSize == Dynamic ? HugeCost
524 : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
525 + (InnerSize - 1) * NumTraits<Scalar>::AddCost,
526
527 Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
528
529 LhsFlags = LhsEtorType::Flags,
530 RhsFlags = RhsEtorType::Flags,
531
532 LhsRowMajor = LhsFlags & RowMajorBit,
533 RhsRowMajor = RhsFlags & RowMajorBit,
534
535 LhsVecPacketSize = unpacket_traits<LhsVecPacketType>::size,
536 RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size,
537
538 // Here, we don't care about alignment larger than the usable packet size.
539 LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))),
540 RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))),
541
542 SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,
543
544 CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1),
545 CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1),
546
547 EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
548 : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
549 : (bool(RhsRowMajor) && !CanVectorizeLhs),
550
551 Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
552 | (EvalToRowMajor ? RowMajorBit : 0)
553 // TODO enable vectorization for mixed types
554 | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0)
555 | (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0),
556
557 LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)),
558 RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)),
559
560 Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment)
561 : bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment)
562 : 0,
563
564 /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
565 * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
566 * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
567 * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
568 */
569 CanVectorizeInner = SameType
570 && LhsRowMajor
571 && (!RhsRowMajor)
572 && (LhsFlags & RhsFlags & ActualPacketAccessBit)
573 && (InnerSize % packet_traits<Scalar>::size == 0)
574 };
575
576 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const
577 {
578 return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
579 }
580
581 /* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
582 * which is why we don't set the LinearAccessBit.
583 * TODO: this seems possible when the result is a vector
584 */
585 EIGEN_DEVICE_FUNC const CoeffReturnType coeff(Index index) const
586 {
587 const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
588 const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
589 return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
590 }
591
592 template<int LoadMode, typename PacketType>
593 const PacketType packet(Index row, Index col) const
594 {
595 PacketType res;
596 typedef etor_product_packet_impl<bool(int(Flags)&RowMajorBit) ? RowMajor : ColMajor,
597 Unroll ? int(InnerSize) : Dynamic,
598 LhsEtorType, RhsEtorType, PacketType, LoadMode> PacketImpl;
599 PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
600 return res;
601 }
602
603 template<int LoadMode, typename PacketType>
604 const PacketType packet(Index index) const
605 {
606 const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
607 const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
608 return packet<LoadMode,PacketType>(row,col);
609 }
610
611protected:
612 typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
613 typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
614
615 LhsEtorType m_lhsImpl;
616 RhsEtorType m_rhsImpl;
617
618 // TODO: Get rid of m_innerDim if known at compile time
619 Index m_innerDim;
620};
621
622template<typename Lhs, typename Rhs>
623struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape>
624 : product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape>
625{
626 typedef Product<Lhs, Rhs, DefaultProduct> XprType;
627 typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
628 typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape> Base;
629 enum {
630 Flags = Base::Flags | EvalBeforeNestingBit
631 };
632 EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
633 : Base(BaseProduct(xpr.lhs(),xpr.rhs()))
634 {}
635};
636
637/****************************************
638*** Coeff based product, Packet path ***
639****************************************/
640
641template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
642struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
643{
644 static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
645 {
646 etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
647 res = pmadd(pset1<Packet>(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet<LoadMode,Packet>(Index(UnrollingIndex-1), col), res);
648 }
649};
650
651template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
652struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
653{
654 static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
655 {
656 etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
657 res = pmadd(lhs.template packet<LoadMode,Packet>(row, Index(UnrollingIndex-1)), pset1<Packet>(rhs.coeff(Index(UnrollingIndex-1), col)), res);
658 }
659};
660
661template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
662struct etor_product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode>
663{
664 static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
665 {
666 res = pmul(pset1<Packet>(lhs.coeff(row, Index(0))),rhs.template packet<LoadMode,Packet>(Index(0), col));
667 }
668};
669
670template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
671struct etor_product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode>
672{
673 static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
674 {
675 res = pmul(lhs.template packet<LoadMode,Packet>(row, Index(0)), pset1<Packet>(rhs.coeff(Index(0), col)));
676 }
677};
678
679template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
680struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
681{
682 static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
683 {
684 res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
685 }
686};
687
688template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
689struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
690{
691 static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
692 {
693 res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
694 }
695};
696
697template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
698struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
699{
700 static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
701 {
702 res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
703 for(Index i = 0; i < innerDim; ++i)
704 res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode,Packet>(i, col), res);
705 }
706};
707
708template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
709struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
710{
711 static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
712 {
713 res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
714 for(Index i = 0; i < innerDim; ++i)
715 res = pmadd(lhs.template packet<LoadMode,Packet>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
716 }
717};
718
719
720/***************************************************************************
721* Triangular products
722***************************************************************************/
723template<int Mode, bool LhsIsTriangular,
724 typename Lhs, bool LhsIsVector,
725 typename Rhs, bool RhsIsVector>
726struct triangular_product_impl;
727
728template<typename Lhs, typename Rhs, int ProductTag>
729struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag>
730 : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> >
731{
732 typedef typename Product<Lhs,Rhs>::Scalar Scalar;
733
734 template<typename Dest>
735 static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
736 {
737 triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1>
738 ::run(dst, lhs.nestedExpression(), rhs, alpha);
739 }
740};
741
742template<typename Lhs, typename Rhs, int ProductTag>
743struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag>
744: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> >
745{
746 typedef typename Product<Lhs,Rhs>::Scalar Scalar;
747
748 template<typename Dest>
749 static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
750 {
751 triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha);
752 }
753};
754
755
756/***************************************************************************
757* SelfAdjoint products
758***************************************************************************/
759template <typename Lhs, int LhsMode, bool LhsIsVector,
760 typename Rhs, int RhsMode, bool RhsIsVector>
761struct selfadjoint_product_impl;
762
763template<typename Lhs, typename Rhs, int ProductTag>
764struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag>
765 : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> >
766{
767 typedef typename Product<Lhs,Rhs>::Scalar Scalar;
768
769 template<typename Dest>
770 static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
771 {
772 selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha);
773 }
774};
775
776template<typename Lhs, typename Rhs, int ProductTag>
777struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag>
778: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> >
779{
780 typedef typename Product<Lhs,Rhs>::Scalar Scalar;
781
782 template<typename Dest>
783 static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
784 {
785 selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha);
786 }
787};
788
789
790/***************************************************************************
791* Diagonal products
792***************************************************************************/
793
794template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
795struct diagonal_product_evaluator_base
796 : evaluator_base<Derived>
797{
798 typedef typename ScalarBinaryOpTraits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
799public:
800 enum {
801 CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost,
802
803 MatrixFlags = evaluator<MatrixType>::Flags,
804 DiagFlags = evaluator<DiagonalType>::Flags,
805 _StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
806 _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
807 ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
808 _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
809 // FIXME currently we need same types, but in the future the next rule should be the one
810 //_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
811 _Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
812 _LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
813 Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0),
814 Alignment = evaluator<MatrixType>::Alignment,
815
816 AsScalarProduct = (DiagonalType::SizeAtCompileTime==1)
817 || (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::RowsAtCompileTime==1 && ProductOrder==OnTheLeft)
818 || (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==1 && ProductOrder==OnTheRight)
819 };
820
821 diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
822 : m_diagImpl(diag), m_matImpl(mat)
823 {
824 EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
825 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
826 }
827
828 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
829 {
830 if(AsScalarProduct)
831 return m_diagImpl.coeff(0) * m_matImpl.coeff(idx);
832 else
833 return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
834 }
835
836protected:
837 template<int LoadMode,typename PacketType>
838 EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const
839 {
840 return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
841 internal::pset1<PacketType>(m_diagImpl.coeff(id)));
842 }
843
844 template<int LoadMode,typename PacketType>
845 EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const
846 {
847 enum {
848 InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
849 DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!!
850 };
851 return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
852 m_diagImpl.template packet<DiagonalPacketLoadMode,PacketType>(id));
853 }
854
855 evaluator<DiagonalType> m_diagImpl;
856 evaluator<MatrixType> m_matImpl;
857};
858
859// diagonal * dense
860template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
861struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape>
862 : diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft>
863{
864 typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base;
865 using Base::m_diagImpl;
866 using Base::m_matImpl;
867 using Base::coeff;
868 typedef typename Base::Scalar Scalar;
869
870 typedef Product<Lhs, Rhs, ProductKind> XprType;
871 typedef typename XprType::PlainObject PlainObject;
872
873 enum {
874 StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor
875 };
876
877 EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
878 : Base(xpr.rhs(), xpr.lhs().diagonal())
879 {
880 }
881
882 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
883 {
884 return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
885 }
886
887#ifndef __CUDACC__
888 template<int LoadMode,typename PacketType>
889 EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
890 {
891 // FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case.
892 // See also similar calls below.
893 return this->template packet_impl<LoadMode,PacketType>(row,col, row,
894 typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
895 }
896
897 template<int LoadMode,typename PacketType>
898 EIGEN_STRONG_INLINE PacketType packet(Index idx) const
899 {
900 return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
901 }
902#endif
903};
904
905// dense * diagonal
906template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
907struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape>
908 : diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight>
909{
910 typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base;
911 using Base::m_diagImpl;
912 using Base::m_matImpl;
913 using Base::coeff;
914 typedef typename Base::Scalar Scalar;
915
916 typedef Product<Lhs, Rhs, ProductKind> XprType;
917 typedef typename XprType::PlainObject PlainObject;
918
919 enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor };
920
921 EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
922 : Base(xpr.lhs(), xpr.rhs().diagonal())
923 {
924 }
925
926 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
927 {
928 return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
929 }
930
931#ifndef __CUDACC__
932 template<int LoadMode,typename PacketType>
933 EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
934 {
935 return this->template packet_impl<LoadMode,PacketType>(row,col, col,
936 typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
937 }
938
939 template<int LoadMode,typename PacketType>
940 EIGEN_STRONG_INLINE PacketType packet(Index idx) const
941 {
942 return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
943 }
944#endif
945};
946
947/***************************************************************************
948* Products with permutation matrices
949***************************************************************************/
950
956template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
957struct permutation_matrix_product;
958
959template<typename ExpressionType, int Side, bool Transposed>
960struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
961{
962 typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
963 typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
964
965 template<typename Dest, typename PermutationType>
966 static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
967 {
968 MatrixType mat(xpr);
969 const Index n = Side==OnTheLeft ? mat.rows() : mat.cols();
970 // FIXME we need an is_same for expression that is not sensitive to constness. For instance
971 // is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
972 //if(is_same<MatrixTypeCleaned,Dest>::value && extract_data(dst) == extract_data(mat))
973 if(is_same_dense(dst, mat))
974 {
975 // apply the permutation inplace
976 Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(perm.size());
977 mask.fill(false);
978 Index r = 0;
979 while(r < perm.size())
980 {
981 // search for the next seed
982 while(r<perm.size() && mask[r]) r++;
983 if(r>=perm.size())
984 break;
985 // we got one, let's follow it until we are back to the seed
986 Index k0 = r++;
987 Index kPrev = k0;
988 mask.coeffRef(k0) = true;
989 for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k))
990 {
991 Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
992 .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
993 (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
994
995 mask.coeffRef(k) = true;
996 kPrev = k;
997 }
998 }
999 }
1000 else
1001 {
1002 for(Index i = 0; i < n; ++i)
1003 {
1004 Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
1005 (dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i)
1006
1007 =
1008
1009 Block<const MatrixTypeCleaned,Side==OnTheLeft ? 1 : MatrixTypeCleaned::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixTypeCleaned::ColsAtCompileTime>
1010 (mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i);
1011 }
1012 }
1013 }
1014};
1015
1016template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1017struct generic_product_impl<Lhs, Rhs, PermutationShape, MatrixShape, ProductTag>
1018{
1019 template<typename Dest>
1020 static EIGEN_DEVICE_FUNC void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
1021 {
1022 permutation_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
1023 }
1024};
1025
1026template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1027struct generic_product_impl<Lhs, Rhs, MatrixShape, PermutationShape, ProductTag>
1028{
1029 template<typename Dest>
1030 static EIGEN_DEVICE_FUNC void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
1031 {
1032 permutation_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
1033 }
1034};
1035
1036template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1037struct generic_product_impl<Inverse<Lhs>, Rhs, PermutationShape, MatrixShape, ProductTag>
1038{
1039 template<typename Dest>
1040 static EIGEN_DEVICE_FUNC void evalTo(Dest& dst, const Inverse<Lhs>& lhs, const Rhs& rhs)
1041 {
1042 permutation_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
1043 }
1044};
1045
1046template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1047struct generic_product_impl<Lhs, Inverse<Rhs>, MatrixShape, PermutationShape, ProductTag>
1048{
1049 template<typename Dest>
1050 static EIGEN_DEVICE_FUNC void evalTo(Dest& dst, const Lhs& lhs, const Inverse<Rhs>& rhs)
1051 {
1052 permutation_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
1053 }
1054};
1055
1056
1057/***************************************************************************
1058* Products with transpositions matrices
1059***************************************************************************/
1060
1061// FIXME could we unify Transpositions and Permutation into a single "shape"??
1062
1067template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
1068struct transposition_matrix_product
1069{
1070 typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
1071 typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
1072
1073 template<typename Dest, typename TranspositionType>
1074 static inline void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr)
1075 {
1076 MatrixType mat(xpr);
1077 typedef typename TranspositionType::StorageIndex StorageIndex;
1078 const Index size = tr.size();
1079 StorageIndex j = 0;
1080
1081 if(!is_same_dense(dst,mat))
1082 dst = mat;
1083
1084 for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
1085 if(Index(j=tr.coeff(k))!=k)
1086 {
1087 if(Side==OnTheLeft) dst.row(k).swap(dst.row(j));
1088 else if(Side==OnTheRight) dst.col(k).swap(dst.col(j));
1089 }
1090 }
1091};
1092
1093template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1094struct generic_product_impl<Lhs, Rhs, TranspositionsShape, MatrixShape, ProductTag>
1095{
1096 template<typename Dest>
1097 static EIGEN_DEVICE_FUNC void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
1098 {
1099 transposition_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
1100 }
1101};
1102
1103template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1104struct generic_product_impl<Lhs, Rhs, MatrixShape, TranspositionsShape, ProductTag>
1105{
1106 template<typename Dest>
1107 static EIGEN_DEVICE_FUNC void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
1108 {
1109 transposition_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
1110 }
1111};
1112
1113
1114template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1115struct generic_product_impl<Transpose<Lhs>, Rhs, TranspositionsShape, MatrixShape, ProductTag>
1116{
1117 template<typename Dest>
1118 static EIGEN_DEVICE_FUNC void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
1119 {
1120 transposition_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
1121 }
1122};
1123
1124template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
1125struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShape, ProductTag>
1126{
1127 template<typename Dest>
1128 static EIGEN_DEVICE_FUNC void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
1129 {
1130 transposition_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
1131 }
1132};
1133
1134} // end namespace internal
1135
1136} // end namespace Eigen
1137
1138#endif // EIGEN_PRODUCT_EVALUATORS_H
@ Aligned16
Definition Constants.h:230
@ ColMajor
Definition Constants.h:320
@ RowMajor
Definition Constants.h:322
@ OnTheLeft
Definition Constants.h:333
@ OnTheRight
Definition Constants.h:335
const unsigned int ActualPacketAccessBit
Definition Constants.h:100
const unsigned int PacketAccessBit
Definition Constants.h:89
const unsigned int LinearAccessBit
Definition Constants.h:125
const unsigned int EvalBeforeNestingBit
Definition Constants.h:65
const unsigned int RowMajorBit
Definition Constants.h:61
Namespace containing all symbols from the Eigen library.
Definition A05_PortingFrom2To3.dox:1
const int HugeCost
Definition Constants.h:39
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:65
const int Dynamic
Definition Constants.h:21