Eigen  3.3.9
 
Loading...
Searching...
No Matches
GeneralMatrixMatrixTriangular.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
11#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
12
13namespace Eigen {
14
15template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
16struct selfadjoint_rank1_update;
17
18namespace internal {
19
20/**********************************************************************
21* This file implements a general A * B product while
22* evaluating only one triangular part of the product.
23* This is a more general version of self adjoint product (C += A A^T)
24* as the level 3 SYRK Blas routine.
25**********************************************************************/
26
27// forward declarations (defined at the end of this file)
28template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int ResInnerStride, int UpLo>
29struct tribb_kernel;
30
31/* Optimized matrix-matrix product evaluating only one triangular half */
32template <typename Index,
33 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
34 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
35 int ResStorageOrder, int ResInnerStride, int UpLo, int Version = Specialized>
36struct general_matrix_matrix_triangular_product;
37
38// as usual if the result is row major => we transpose the product
39template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
40 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
41 int ResInnerStride, int UpLo, int Version>
42struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,ResInnerStride,UpLo,Version>
43{
44 typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
45 static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
46 const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resIncr, Index resStride,
47 const ResScalar& alpha, level3_blocking<RhsScalar,LhsScalar>& blocking)
48 {
49 general_matrix_matrix_triangular_product<Index,
50 RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
51 LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
52 ColMajor, ResInnerStride, UpLo==Lower?Upper:Lower>
53 ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resIncr,resStride,alpha,blocking);
54 }
55};
56
57template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
58 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
59 int ResInnerStride, int UpLo, int Version>
60struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,ResInnerStride,UpLo,Version>
61{
62 typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
63 static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
64 const RhsScalar* _rhs, Index rhsStride,
65 ResScalar* _res, Index resIncr, Index resStride,
66 const ResScalar& alpha, level3_blocking<LhsScalar,RhsScalar>& blocking)
67 {
68 typedef gebp_traits<LhsScalar,RhsScalar> Traits;
69
70 typedef const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> LhsMapper;
71 typedef const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> RhsMapper;
72 typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor, Unaligned, ResInnerStride> ResMapper;
73 LhsMapper lhs(_lhs,lhsStride);
74 RhsMapper rhs(_rhs,rhsStride);
75 ResMapper res(_res, resStride, resIncr);
76
77 Index kc = blocking.kc();
78 Index mc = (std::min)(size,blocking.mc());
79
80 // !!! mc must be a multiple of nr:
81 if(mc > Traits::nr)
82 mc = (mc/Traits::nr)*Traits::nr;
83
84 std::size_t sizeA = kc*mc;
85 std::size_t sizeB = kc*size;
86
87 ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
88 ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
89
90 gemm_pack_lhs<LhsScalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
91 gemm_pack_rhs<RhsScalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
92 gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
93 tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, ResInnerStride, UpLo> sybb;
94
95 for(Index k2=0; k2<depth; k2+=kc)
96 {
97 const Index actual_kc = (std::min)(k2+kc,depth)-k2;
98
99 // note that the actual rhs is the transpose/adjoint of mat
100 pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, size);
101
102 for(Index i2=0; i2<size; i2+=mc)
103 {
104 const Index actual_mc = (std::min)(i2+mc,size)-i2;
105
106 pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
107
108 // the selected actual_mc * size panel of res is split into three different part:
109 // 1 - before the diagonal => processed with gebp or skipped
110 // 2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
111 // 3 - after the diagonal => processed with gebp or skipped
112 if (UpLo==Lower)
113 gebp(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc,
114 (std::min)(size,i2), alpha, -1, -1, 0, 0);
115
116 sybb(_res+resStride*i2 + resIncr*i2, resIncr, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha);
117
118 if (UpLo==Upper)
119 {
120 Index j2 = i2+actual_mc;
121 gebp(res.getSubMapper(i2, j2), blockA, blockB+actual_kc*j2, actual_mc,
122 actual_kc, (std::max)(Index(0), size-j2), alpha, -1, -1, 0, 0);
123 }
124 }
125 }
126 }
127};
128
129// Optimized packed Block * packed Block product kernel evaluating only one given triangular part
130// This kernel is built on top of the gebp kernel:
131// - the current destination block is processed per panel of actual_mc x BlockSize
132// where BlockSize is set to the minimal value allowing gebp to be as fast as possible
133// - then, as usual, each panel is split into three parts along the diagonal,
134// the sub blocks above and below the diagonal are processed as usual,
135// while the triangular block overlapping the diagonal is evaluated into a
136// small temporary buffer which is then accumulated into the result using a
137// triangular traversal.
138template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int ResInnerStride, int UpLo>
139struct tribb_kernel
140{
141 typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits;
142 typedef typename Traits::ResScalar ResScalar;
143
144 enum {
145 BlockSize = meta_least_common_multiple<EIGEN_PLAIN_ENUM_MAX(mr,nr),EIGEN_PLAIN_ENUM_MIN(mr,nr)>::ret
146 };
147 void operator()(ResScalar* _res, Index resIncr, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha)
148 {
149 typedef blas_data_mapper<ResScalar, Index, ColMajor, Unaligned, ResInnerStride> ResMapper;
150 typedef blas_data_mapper<ResScalar, Index, ColMajor, Unaligned> BufferMapper;
151 ResMapper res(_res, resStride, resIncr);
152 gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, mr, nr, ConjLhs, ConjRhs> gebp_kernel1;
153 gebp_kernel<LhsScalar, RhsScalar, Index, BufferMapper, mr, nr, ConjLhs, ConjRhs> gebp_kernel2;
154
155 Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer((internal::constructor_without_unaligned_array_assert()));
156
157 // let's process the block per panel of actual_mc x BlockSize,
158 // again, each is split into three parts, etc.
159 for (Index j=0; j<size; j+=BlockSize)
160 {
161 Index actualBlockSize = std::min<Index>(BlockSize,size - j);
162 const RhsScalar* actual_b = blockB+j*depth;
163
164 if(UpLo==Upper)
165 gebp_kernel1(res.getSubMapper(0, j), blockA, actual_b, j, depth, actualBlockSize, alpha,
166 -1, -1, 0, 0);
167
168 // selfadjoint micro block
169 {
170 Index i = j;
171 buffer.setZero();
172 // 1 - apply the kernel on the temporary buffer
173 gebp_kernel2(BufferMapper(buffer.data(), BlockSize), blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
174 -1, -1, 0, 0);
175
176 // 2 - triangular accumulation
177 for(Index j1=0; j1<actualBlockSize; ++j1)
178 {
179 typename ResMapper::LinearMapper r = res.getLinearMapper(i,j+j1);
180 for(Index i1=UpLo==Lower ? j1 : 0;
181 UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
182 r(i1) += buffer(i1,j1);
183 }
184 }
185
186 if(UpLo==Lower)
187 {
188 Index i = j+actualBlockSize;
189 gebp_kernel1(res.getSubMapper(i, j), blockA+depth*i, actual_b, size-i,
190 depth, actualBlockSize, alpha, -1, -1, 0, 0);
191 }
192 }
193 }
194};
195
196} // end namespace internal
197
198// high level API
199
200template<typename MatrixType, typename ProductType, int UpLo, bool IsOuterProduct>
201struct general_product_to_triangular_selector;
202
203
204template<typename MatrixType, typename ProductType, int UpLo>
205struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,true>
206{
207 static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta)
208 {
209 typedef typename MatrixType::Scalar Scalar;
210
211 typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
212 typedef internal::blas_traits<Lhs> LhsBlasTraits;
213 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
214 typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
215 typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
216
217 typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
218 typedef internal::blas_traits<Rhs> RhsBlasTraits;
219 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
220 typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
221 typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
222
223 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
224
225 if(!beta)
226 mat.template triangularView<UpLo>().setZero();
227
228 enum {
229 StorageOrder = (internal::traits<MatrixType>::Flags&RowMajorBit) ? RowMajor : ColMajor,
230 UseLhsDirectly = _ActualLhs::InnerStrideAtCompileTime==1,
231 UseRhsDirectly = _ActualRhs::InnerStrideAtCompileTime==1
232 };
233
234 internal::gemv_static_vector_if<Scalar,Lhs::SizeAtCompileTime,Lhs::MaxSizeAtCompileTime,!UseLhsDirectly> static_lhs;
235 ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(),
236 (UseLhsDirectly ? const_cast<Scalar*>(actualLhs.data()) : static_lhs.data()));
237 if(!UseLhsDirectly) Map<typename _ActualLhs::PlainObject>(actualLhsPtr, actualLhs.size()) = actualLhs;
238
239 internal::gemv_static_vector_if<Scalar,Rhs::SizeAtCompileTime,Rhs::MaxSizeAtCompileTime,!UseRhsDirectly> static_rhs;
240 ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(),
241 (UseRhsDirectly ? const_cast<Scalar*>(actualRhs.data()) : static_rhs.data()));
242 if(!UseRhsDirectly) Map<typename _ActualRhs::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
243
244
245 selfadjoint_rank1_update<Scalar,Index,StorageOrder,UpLo,
246 LhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
247 RhsBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex>
248 ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha);
249 }
250};
251
252template<typename MatrixType, typename ProductType, int UpLo>
253struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
254{
255 static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta)
256 {
257 typedef typename internal::remove_all<typename ProductType::LhsNested>::type Lhs;
258 typedef internal::blas_traits<Lhs> LhsBlasTraits;
259 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
260 typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
261 typename internal::add_const_on_value_type<ActualLhs>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
262
263 typedef typename internal::remove_all<typename ProductType::RhsNested>::type Rhs;
264 typedef internal::blas_traits<Rhs> RhsBlasTraits;
265 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
266 typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
267 typename internal::add_const_on_value_type<ActualRhs>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
268
269 typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
270
271 if(!beta)
272 mat.template triangularView<UpLo>().setZero();
273
274 enum {
275 IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0,
276 LhsIsRowMajor = _ActualLhs::Flags&RowMajorBit ? 1 : 0,
277 RhsIsRowMajor = _ActualRhs::Flags&RowMajorBit ? 1 : 0,
278 SkipDiag = (UpLo&(UnitDiag|ZeroDiag))!=0
279 };
280
281 Index size = mat.cols();
282 if(SkipDiag)
283 size--;
284 Index depth = actualLhs.cols();
285
286 typedef internal::gemm_blocking_space<IsRowMajor ? RowMajor : ColMajor,typename Lhs::Scalar,typename Rhs::Scalar,
287 MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime, _ActualRhs::MaxColsAtCompileTime> BlockingType;
288
289 BlockingType blocking(size, size, depth, 1, false);
290
291 internal::general_matrix_matrix_triangular_product<Index,
292 typename Lhs::Scalar, LhsIsRowMajor ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
293 typename Rhs::Scalar, RhsIsRowMajor ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
294 IsRowMajor ? RowMajor : ColMajor, MatrixType::InnerStrideAtCompileTime, UpLo&(Lower|Upper)>
295 ::run(size, depth,
296 &actualLhs.coeffRef(SkipDiag&&(UpLo&Lower)==Lower ? 1 : 0,0), actualLhs.outerStride(),
297 &actualRhs.coeffRef(0,SkipDiag&&(UpLo&Upper)==Upper ? 1 : 0), actualRhs.outerStride(),
298 mat.data() + (SkipDiag ? (bool(IsRowMajor) != ((UpLo&Lower)==Lower) ? mat.innerStride() : mat.outerStride() ) : 0),
299 mat.innerStride(), mat.outerStride(), actualAlpha, blocking);
300 }
301};
302
303template<typename _MatrixType, unsigned int _Mode>
304template<typename ProductType>
305EIGEN_DEVICE_FUNC TriangularView<_MatrixType,_Mode>& TriangularViewImpl<_MatrixType,_Mode,Dense>::_assignProduct(const ProductType& prod, const Scalar& alpha, bool beta)
306{
307 EIGEN_STATIC_ASSERT((_Mode&UnitDiag)==0, WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED);
308 eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols());
309
310 general_product_to_triangular_selector<_MatrixType, ProductType, _Mode, internal::traits<ProductType>::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha, beta);
311
312 return derived();
313}
314
315} // end namespace Eigen
316
317#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
@ UnitDiag
Definition Constants.h:208
@ ZeroDiag
Definition Constants.h:210
@ Lower
Definition Constants.h:204
@ Upper
Definition Constants.h:206
@ ColMajor
Definition Constants.h:320
@ RowMajor
Definition Constants.h:322
const unsigned int RowMajorBit
Definition Constants.h:61
Namespace containing all symbols from the Eigen library.
Definition A05_PortingFrom2To3.dox:1
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:65