Eigen  3.2.10
 
Loading...
Searching...
No Matches
Quaternion.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_QUATERNION_H
12#define EIGEN_QUATERNION_H
13namespace Eigen {
14
15
16/***************************************************************************
17* Definition of QuaternionBase<Derived>
18* The implementation is at the end of the file
19***************************************************************************/
20
21namespace internal {
22template<typename Other,
23 int OtherRows=Other::RowsAtCompileTime,
24 int OtherCols=Other::ColsAtCompileTime>
25struct quaternionbase_assign_impl;
26}
27
34template<class Derived>
35class QuaternionBase : public RotationBase<Derived, 3>
36{
37 typedef RotationBase<Derived, 3> Base;
38public:
39 using Base::operator*;
40 using Base::derived;
41
42 typedef typename internal::traits<Derived>::Scalar Scalar;
43 typedef typename NumTraits<Scalar>::Real RealScalar;
44 typedef typename internal::traits<Derived>::Coefficients Coefficients;
45 enum {
46 Flags = Eigen::internal::traits<Derived>::Flags
47 };
48
49 // typedef typename Matrix<Scalar,4,1> Coefficients;
56
57
58
60 inline Scalar x() const { return this->derived().coeffs().coeff(0); }
62 inline Scalar y() const { return this->derived().coeffs().coeff(1); }
64 inline Scalar z() const { return this->derived().coeffs().coeff(2); }
66 inline Scalar w() const { return this->derived().coeffs().coeff(3); }
67
69 inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
71 inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
73 inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
75 inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
76
78 inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
79
81 inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
82
84 inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
85
87 inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
88
89 EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
90 template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
91
92// disabled this copy operator as it is giving very strange compilation errors when compiling
93// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
94// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
95// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
96// Derived& operator=(const QuaternionBase& other)
97// { return operator=<Derived>(other); }
98
99 Derived& operator=(const AngleAxisType& aa);
100 template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
101
105 static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
106
109 inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
110
114 inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
115
119 inline Scalar norm() const { return coeffs().norm(); }
120
123 inline void normalize() { coeffs().normalize(); }
127
133 template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
134
135 template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
136
139
141 template<typename Derived1, typename Derived2>
143
144 template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
145 template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
146
149
152
153 template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
154
159 template<class OtherDerived>
160 bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
161 { return coeffs().isApprox(other.coeffs(), prec); }
162
164 EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
165
171 template<typename NewScalarType>
172 inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
173 {
174 return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
175 }
176
177#ifdef EIGEN_QUATERNIONBASE_PLUGIN
178# include EIGEN_QUATERNIONBASE_PLUGIN
179#endif
180};
181
182/***************************************************************************
183* Definition/implementation of Quaternion<Scalar>
184***************************************************************************/
185
210
211namespace internal {
212template<typename _Scalar,int _Options>
213struct traits<Quaternion<_Scalar,_Options> >
214{
215 typedef Quaternion<_Scalar,_Options> PlainObject;
216 typedef _Scalar Scalar;
217 typedef Matrix<_Scalar,4,1,_Options> Coefficients;
218 enum{
219 IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
220 Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
221 };
222};
223}
224
225template<typename _Scalar, int _Options>
226class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
227{
229 enum { IsAligned = internal::traits<Quaternion>::IsAligned };
230
231public:
232 typedef _Scalar Scalar;
233
234 EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
235 using Base::operator*=;
236
237 typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
238 typedef typename Base::AngleAxisType AngleAxisType;
239
241 inline Quaternion() {}
242
250 inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
251
253 inline Quaternion(const Scalar* data) : m_coeffs(data) {}
254
256 template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
257
259 explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
260
265 template<typename Derived>
266 explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
267
269 template<typename OtherScalar, int OtherOptions>
271 { m_coeffs = other.coeffs().template cast<Scalar>(); }
272
273 template<typename Derived1, typename Derived2>
274 static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
275
276 inline Coefficients& coeffs() { return m_coeffs;}
277 inline const Coefficients& coeffs() const { return m_coeffs;}
278
279 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(IsAligned))
280
281protected:
282 Coefficients m_coeffs;
283
284#ifndef EIGEN_PARSED_BY_DOXYGEN
285 static EIGEN_STRONG_INLINE void _check_template_params()
286 {
287 EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
288 INVALID_MATRIX_TEMPLATE_PARAMETERS)
289 }
290#endif
291};
292
299
300/***************************************************************************
301* Specialization of Map<Quaternion<Scalar>>
302***************************************************************************/
303
304namespace internal {
305 template<typename _Scalar, int _Options>
306 struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
307 {
308 typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
309 };
310}
311
312namespace internal {
313 template<typename _Scalar, int _Options>
314 struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
315 {
316 typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
317 typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
318 enum {
319 Flags = TraitsBase::Flags & ~LvalueBit
320 };
321 };
322}
323
335template<typename _Scalar, int _Options>
336class Map<const Quaternion<_Scalar>, _Options >
337 : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
338{
339 typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
340
341 public:
342 typedef _Scalar Scalar;
343 typedef typename internal::traits<Map>::Coefficients Coefficients;
344 EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
345 using Base::operator*=;
346
353 EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
354
355 inline const Coefficients& coeffs() const { return m_coeffs;}
356
357 protected:
358 const Coefficients m_coeffs;
359};
360
372template<typename _Scalar, int _Options>
373class Map<Quaternion<_Scalar>, _Options >
374 : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
375{
376 typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
377
378 public:
379 typedef _Scalar Scalar;
380 typedef typename internal::traits<Map>::Coefficients Coefficients;
381 EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
382 using Base::operator*=;
383
390 EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
391
392 inline Coefficients& coeffs() { return m_coeffs; }
393 inline const Coefficients& coeffs() const { return m_coeffs; }
394
395 protected:
396 Coefficients m_coeffs;
397};
398
411
412/***************************************************************************
413* Implementation of QuaternionBase methods
414***************************************************************************/
415
416// Generic Quaternion * Quaternion product
417// This product can be specialized for a given architecture via the Arch template argument.
418namespace internal {
419template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
420{
421 static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
422 return Quaternion<Scalar>
423 (
424 a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
425 a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
426 a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
427 a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
428 );
429 }
430};
431}
432
434template <class Derived>
435template <class OtherDerived>
436EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
438{
439 EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
440 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
441 return internal::quat_product<Architecture::Target, Derived, OtherDerived,
442 typename internal::traits<Derived>::Scalar,
443 internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
444}
445
447template <class Derived>
448template <class OtherDerived>
450{
451 derived() = derived() * other.derived();
452 return derived();
453}
454
462template <class Derived>
463EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
465{
466 // Note that this algorithm comes from the optimization by hand
467 // of the conversion to a Matrix followed by a Matrix/Vector product.
468 // It appears to be much faster than the common algorithm found
469 // in the literature (30 versus 39 flops). It also requires two
470 // Vector3 as temporaries.
471 Vector3 uv = this->vec().cross(v);
472 uv += uv;
473 return v + this->w() * uv + this->vec().cross(uv);
474}
475
476template<class Derived>
477EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
478{
479 coeffs() = other.coeffs();
480 return derived();
481}
482
483template<class Derived>
484template<class OtherDerived>
485EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
486{
487 coeffs() = other.coeffs();
488 return derived();
489}
490
493template<class Derived>
494EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
495{
496 using std::cos;
497 using std::sin;
498 Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
499 this->w() = cos(ha);
500 this->vec() = sin(ha) * aa.axis();
501 return derived();
502}
503
509
510template<class Derived>
511template<class MatrixDerived>
512inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
513{
514 EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
515 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
516 internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
517 return derived();
518}
519
523template<class Derived>
526{
527 // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
528 // if not inlined then the cost of the return by value is huge ~ +35%,
529 // however, not inlining this function is an order of magnitude slower, so
530 // it has to be inlined, and so the return by value is not an issue
531 Matrix3 res;
532
533 const Scalar tx = Scalar(2)*this->x();
534 const Scalar ty = Scalar(2)*this->y();
535 const Scalar tz = Scalar(2)*this->z();
536 const Scalar twx = tx*this->w();
537 const Scalar twy = ty*this->w();
538 const Scalar twz = tz*this->w();
539 const Scalar txx = tx*this->x();
540 const Scalar txy = ty*this->x();
541 const Scalar txz = tz*this->x();
542 const Scalar tyy = ty*this->y();
543 const Scalar tyz = tz*this->y();
544 const Scalar tzz = tz*this->z();
545
546 res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
547 res.coeffRef(0,1) = txy-twz;
548 res.coeffRef(0,2) = txz+twy;
549 res.coeffRef(1,0) = txy+twz;
550 res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
551 res.coeffRef(1,2) = tyz-twx;
552 res.coeffRef(2,0) = txz-twy;
553 res.coeffRef(2,1) = tyz+twx;
554 res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
555
556 return res;
557}
558
569template<class Derived>
570template<typename Derived1, typename Derived2>
572{
573 using std::max;
574 using std::sqrt;
575 Vector3 v0 = a.normalized();
576 Vector3 v1 = b.normalized();
577 Scalar c = v1.dot(v0);
578
579 // if dot == -1, vectors are nearly opposites
580 // => accurately compute the rotation axis by computing the
581 // intersection of the two planes. This is done by solving:
582 // x^T v0 = 0
583 // x^T v1 = 0
584 // under the constraint:
585 // ||x|| = 1
586 // which yields a singular value problem
587 if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
588 {
589 c = (max)(c,Scalar(-1));
590 Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
592 Vector3 axis = svd.matrixV().col(2);
593
594 Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
595 this->w() = sqrt(w2);
596 this->vec() = axis * sqrt(Scalar(1) - w2);
597 return derived();
598 }
599 Vector3 axis = v0.cross(v1);
600 Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
601 Scalar invs = Scalar(1)/s;
602 this->vec() = axis * invs;
603 this->w() = s * Scalar(0.5);
604
605 return derived();
606}
607
608
619template<typename Scalar, int Options>
620template<typename Derived1, typename Derived2>
621Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
622{
623 Quaternion quat;
624 quat.setFromTwoVectors(a, b);
625 return quat;
626}
627
628
635template <class Derived>
637{
638 // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
639 Scalar n2 = this->squaredNorm();
640 if (n2 > Scalar(0))
641 return Quaternion<Scalar>(conjugate().coeffs() / n2);
642 else
643 {
644 // return an invalid result to flag the error
645 return Quaternion<Scalar>(Coefficients::Zero());
646 }
647}
648
655template <class Derived>
658{
659 return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
660}
661
665template <class Derived>
666template <class OtherDerived>
667inline typename internal::traits<Derived>::Scalar
668QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
669{
670 using std::atan2;
671 using std::abs;
672 Quaternion<Scalar> d = (*this) * other.conjugate();
673 return Scalar(2) * atan2( d.vec().norm(), abs(d.w()) );
674}
675
676
677
684template <class Derived>
685template <class OtherDerived>
687QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
688{
689 using std::acos;
690 using std::sin;
691 using std::abs;
692 static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
693 Scalar d = this->dot(other);
694 Scalar absD = abs(d);
695
696 Scalar scale0;
697 Scalar scale1;
698
699 if(absD>=one)
700 {
701 scale0 = Scalar(1) - t;
702 scale1 = t;
703 }
704 else
705 {
706 // theta is the angle between the 2 quaternions
707 Scalar theta = acos(absD);
708 Scalar sinTheta = sin(theta);
709
710 scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
711 scale1 = sin( ( t * theta) ) / sinTheta;
712 }
713 if(d<Scalar(0)) scale1 = -scale1;
714
715 return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
716}
717
718namespace internal {
719
720// set from a rotation matrix
721template<typename Other>
722struct quaternionbase_assign_impl<Other,3,3>
723{
724 typedef typename Other::Scalar Scalar;
725 typedef DenseIndex Index;
726 template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
727 {
728 using std::sqrt;
729 // This algorithm comes from "Quaternion Calculus and Fast Animation",
730 // Ken Shoemake, 1987 SIGGRAPH course notes
731 Scalar t = mat.trace();
732 if (t > Scalar(0))
733 {
734 t = sqrt(t + Scalar(1.0));
735 q.w() = Scalar(0.5)*t;
736 t = Scalar(0.5)/t;
737 q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
738 q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
739 q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
740 }
741 else
742 {
743 DenseIndex i = 0;
744 if (mat.coeff(1,1) > mat.coeff(0,0))
745 i = 1;
746 if (mat.coeff(2,2) > mat.coeff(i,i))
747 i = 2;
748 DenseIndex j = (i+1)%3;
749 DenseIndex k = (j+1)%3;
750
751 t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
752 q.coeffs().coeffRef(i) = Scalar(0.5) * t;
753 t = Scalar(0.5)/t;
754 q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
755 q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
756 q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
757 }
758 }
759};
760
761// set from a vector of coefficients assumed to be a quaternion
762template<typename Other>
763struct quaternionbase_assign_impl<Other,4,1>
764{
765 typedef typename Other::Scalar Scalar;
766 template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
767 {
768 q.coeffs() = vec;
769 }
770};
771
772} // end namespace internal
773
774} // end namespace Eigen
775
776#endif // EIGEN_QUATERNION_H
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
Definition AngleAxis.h:50
Scalar angle() const
Definition AngleAxis.h:87
const Vector3 & axis() const
Definition AngleAxis.h:92
Eigen::Transpose< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > > transpose()
Definition Transpose.h:199
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition JacobiSVD.h:521
const MatrixVType & matrixV() const
Definition JacobiSVD.h:649
Map(Scalar *coeffs)
Definition Quaternion.h:390
Map(const Scalar *coeffs)
Definition Quaternion.h:353
A matrix or vector expression mapping an existing array of data.
Definition Map.h:106
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
const PlainObject normalized() const
Definition Dot.h:139
MatrixBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::template cross_product_return_type< OtherDerived >::type cross(const MatrixBase< OtherDerived > &other) const
Definition OrthoMethods.h:26
internal::scalar_product_traits< typenameinternal::traits< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::Scalar, typenameinternal::traits< OtherDerived >::Scalar >::ReturnType dot(const MatrixBase< OtherDerived > &other) const
Definition Dot.h:63
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:129
Base class for quaternion expressions.
Definition Quaternion.h:36
Scalar dot(const QuaternionBase< OtherDerived > &other) const
Definition Quaternion.h:133
QuaternionBase & setIdentity()
Definition Quaternion.h:109
VectorBlock< Coefficients, 3 > vec()
Definition Quaternion.h:81
Quaternion< Scalar > conjugate() const
Definition Quaternion.h:657
Scalar & z()
Definition Quaternion.h:73
Scalar w() const
Definition Quaternion.h:66
Scalar z() const
Definition Quaternion.h:64
internal::traits< Derived >::Coefficients & coeffs()
Definition Quaternion.h:87
internal::cast_return_type< Derived, Quaternion< NewScalarType > >::type cast() const
Definition Quaternion.h:172
bool isApprox(const QuaternionBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
Definition Quaternion.h:160
Quaternion< Scalar > normalized() const
Definition Quaternion.h:126
Vector3 _transformVector(const Vector3 &v) const
Definition Quaternion.h:464
Derived & operator=(const AngleAxisType &aa)
Definition Quaternion.h:494
const VectorBlock< const Coefficients, 3 > vec() const
Definition Quaternion.h:78
Scalar & y()
Definition Quaternion.h:71
Derived & operator*=(const QuaternionBase< OtherDerived > &q)
Definition Quaternion.h:449
Matrix< Scalar, 3, 1 > Vector3
Definition Quaternion.h:51
const internal::traits< Derived >::Coefficients & coeffs() const
Definition Quaternion.h:84
Matrix< Scalar, 3, 3 > Matrix3
Definition Quaternion.h:53
Derived & setFromTwoVectors(const MatrixBase< Derived1 > &a, const MatrixBase< Derived2 > &b)
Definition Quaternion.h:571
AngleAxis< Scalar > AngleAxisType
Definition Quaternion.h:55
void normalize()
Definition Quaternion.h:123
Quaternion< Scalar > inverse() const
Definition Quaternion.h:636
Scalar norm() const
Definition Quaternion.h:119
Scalar & x()
Definition Quaternion.h:69
Matrix3 toRotationMatrix() const
Definition Quaternion.h:525
Scalar x() const
Definition Quaternion.h:60
Scalar y() const
Definition Quaternion.h:62
Scalar squaredNorm() const
Definition Quaternion.h:114
Scalar & w()
Definition Quaternion.h:75
static Quaternion< Scalar > Identity()
Definition Quaternion.h:105
The quaternion class used to represent 3D orientations and rotations.
Definition Quaternion.h:227
Quaternion(const AngleAxisType &aa)
Definition Quaternion.h:259
Quaternion(const QuaternionBase< Derived > &other)
Definition Quaternion.h:256
Quaternion()
Definition Quaternion.h:241
Quaternion(const Quaternion< OtherScalar, OtherOptions > &other)
Definition Quaternion.h:270
Quaternion(const Scalar &w, const Scalar &x, const Scalar &y, const Scalar &z)
Definition Quaternion.h:250
Quaternion(const MatrixBase< Derived > &other)
Definition Quaternion.h:266
Quaternion(const Scalar *data)
Definition Quaternion.h:253
Common base class for compact rotation representations.
Definition RotationBase.h:30
Expression of a fixed-size or dynamic-size sub-vector.
Definition VectorBlock.h:61
Quaternion< double > Quaterniond
Definition Quaternion.h:298
Map< Quaternion< float >, 0 > QuaternionMapf
Definition Quaternion.h:401
Map< Quaternion< float >, Aligned > QuaternionMapAlignedf
Definition Quaternion.h:407
Map< Quaternion< double >, Aligned > QuaternionMapAlignedd
Definition Quaternion.h:410
Map< Quaternion< double >, 0 > QuaternionMapd
Definition Quaternion.h:404
Quaternion< float > Quaternionf
Definition Quaternion.h:295
@ ComputeFullV
Definition Constants.h:331
@ Aligned
Definition Constants.h:194
const unsigned int LvalueBit
Definition Constants.h:131
const unsigned int AlignedBit
Definition Constants.h:147
Definition LDLT.h:18