Eigen  3.2.10
 
Loading...
Searching...
No Matches
IncompleteLUT.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_INCOMPLETE_LUT_H
11#define EIGEN_INCOMPLETE_LUT_H
12
13
14namespace Eigen {
15
16namespace internal {
17
27template <typename VectorV, typename VectorI, typename Index>
28Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
29{
30 typedef typename VectorV::RealScalar RealScalar;
31 using std::swap;
32 using std::abs;
33 Index mid;
34 Index n = row.size(); /* length of the vector */
35 Index first, last ;
36
37 ncut--; /* to fit the zero-based indices */
38 first = 0;
39 last = n-1;
40 if (ncut < first || ncut > last ) return 0;
41
42 do {
43 mid = first;
44 RealScalar abskey = abs(row(mid));
45 for (Index j = first + 1; j <= last; j++) {
46 if ( abs(row(j)) > abskey) {
47 ++mid;
48 swap(row(mid), row(j));
49 swap(ind(mid), ind(j));
50 }
51 }
52 /* Interchange for the pivot element */
53 swap(row(mid), row(first));
54 swap(ind(mid), ind(first));
55
56 if (mid > ncut) last = mid - 1;
57 else if (mid < ncut ) first = mid + 1;
58 } while (mid != ncut );
59
60 return 0; /* mid is equal to ncut */
61}
62
63}// end namespace internal
64
95template <typename _Scalar>
96class IncompleteLUT : internal::noncopyable
97{
98 typedef _Scalar Scalar;
99 typedef typename NumTraits<Scalar>::Real RealScalar;
100 typedef Matrix<Scalar,Dynamic,1> Vector;
101 typedef SparseMatrix<Scalar,RowMajor> FactorType;
102 typedef SparseMatrix<Scalar,ColMajor> PermutType;
103 typedef typename FactorType::Index Index;
104
105 public:
106 typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
107
108 IncompleteLUT()
109 : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
110 m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
111 {}
112
113 template<typename MatrixType>
114 IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
115 : m_droptol(droptol),m_fillfactor(fillfactor),
116 m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
117 {
118 eigen_assert(fillfactor != 0);
119 compute(mat);
120 }
121
122 Index rows() const { return m_lu.rows(); }
123
124 Index cols() const { return m_lu.cols(); }
125
132 {
133 eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
134 return m_info;
135 }
136
137 template<typename MatrixType>
138 void analyzePattern(const MatrixType& amat);
139
140 template<typename MatrixType>
141 void factorize(const MatrixType& amat);
142
148 template<typename MatrixType>
149 IncompleteLUT<Scalar>& compute(const MatrixType& amat)
150 {
151 analyzePattern(amat);
152 factorize(amat);
153 return *this;
154 }
155
156 void setDroptol(const RealScalar& droptol);
157 void setFillfactor(int fillfactor);
158
159 template<typename Rhs, typename Dest>
160 void _solve(const Rhs& b, Dest& x) const
161 {
162 x = m_Pinv * b;
163 x = m_lu.template triangularView<UnitLower>().solve(x);
164 x = m_lu.template triangularView<Upper>().solve(x);
165 x = m_P * x;
166 }
167
168 template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
169 solve(const MatrixBase<Rhs>& b) const
170 {
171 eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
172 eigen_assert(cols()==b.rows()
173 && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
174 return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
175 }
176
177protected:
178
180 struct keep_diag {
181 inline bool operator() (const Index& row, const Index& col, const Scalar&) const
182 {
183 return row!=col;
184 }
185 };
186
187protected:
188
189 FactorType m_lu;
190 RealScalar m_droptol;
191 int m_fillfactor;
192 bool m_analysisIsOk;
193 bool m_factorizationIsOk;
194 bool m_isInitialized;
195 ComputationInfo m_info;
196 PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
197 PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
198};
199
204template<typename Scalar>
205void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
206{
207 this->m_droptol = droptol;
208}
209
214template<typename Scalar>
216{
217 this->m_fillfactor = fillfactor;
218}
219
220template <typename Scalar>
221template<typename _MatrixType>
222void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
223{
224 // Compute the Fill-reducing permutation
225 // Since ILUT does not perform any numerical pivoting,
226 // it is highly preferable to keep the diagonal through symmetric permutations.
227#ifndef EIGEN_MPL2_ONLY
228 // To this end, let's symmetrize the pattern and perform AMD on it.
230 SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
231 // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
232 // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
233 SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
234 AMDOrdering<Index> ordering;
235 ordering(AtA,m_P);
236 m_Pinv = m_P.inverse(); // cache the inverse permutation
237#else
238 // If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine.
240 COLAMDOrdering<Index> ordering;
241 ordering(mat1,m_Pinv);
242 m_P = m_Pinv.inverse();
243#endif
244
245 m_analysisIsOk = true;
246 m_factorizationIsOk = false;
247 m_isInitialized = false;
248}
249
250template <typename Scalar>
251template<typename _MatrixType>
252void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
253{
254 using std::sqrt;
255 using std::swap;
256 using std::abs;
257
258 eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
259 Index n = amat.cols(); // Size of the matrix
260 m_lu.resize(n,n);
261 // Declare Working vectors and variables
262 Vector u(n) ; // real values of the row -- maximum size is n --
263 VectorXi ju(n); // column position of the values in u -- maximum size is n
264 VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
265
266 // Apply the fill-reducing permutation
267 eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
268 SparseMatrix<Scalar,RowMajor, Index> mat;
269 mat = amat.twistedBy(m_Pinv);
270
271 // Initialization
272 jr.fill(-1);
273 ju.fill(0);
274 u.fill(0);
275
276 // number of largest elements to keep in each row:
277 Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
278 if (fill_in > n) fill_in = n;
279
280 // number of largest nonzero elements to keep in the L and the U part of the current row:
281 Index nnzL = fill_in/2;
282 Index nnzU = nnzL;
283 m_lu.reserve(n * (nnzL + nnzU + 1));
284
285 // global loop over the rows of the sparse matrix
286 for (Index ii = 0; ii < n; ii++)
287 {
288 // 1 - copy the lower and the upper part of the row i of mat in the working vector u
289
290 Index sizeu = 1; // number of nonzero elements in the upper part of the current row
291 Index sizel = 0; // number of nonzero elements in the lower part of the current row
292 ju(ii) = ii;
293 u(ii) = 0;
294 jr(ii) = ii;
295 RealScalar rownorm = 0;
296
297 typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
298 for (; j_it; ++j_it)
299 {
300 Index k = j_it.index();
301 if (k < ii)
302 {
303 // copy the lower part
304 ju(sizel) = k;
305 u(sizel) = j_it.value();
306 jr(k) = sizel;
307 ++sizel;
308 }
309 else if (k == ii)
310 {
311 u(ii) = j_it.value();
312 }
313 else
314 {
315 // copy the upper part
316 Index jpos = ii + sizeu;
317 ju(jpos) = k;
318 u(jpos) = j_it.value();
319 jr(k) = jpos;
320 ++sizeu;
321 }
322 rownorm += numext::abs2(j_it.value());
323 }
324
325 // 2 - detect possible zero row
326 if(rownorm==0)
327 {
328 m_info = NumericalIssue;
329 return;
330 }
331 // Take the 2-norm of the current row as a relative tolerance
332 rownorm = sqrt(rownorm);
333
334 // 3 - eliminate the previous nonzero rows
335 Index jj = 0;
336 Index len = 0;
337 while (jj < sizel)
338 {
339 // In order to eliminate in the correct order,
340 // we must select first the smallest column index among ju(jj:sizel)
341 Index k;
342 Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
343 k += jj;
344 if (minrow != ju(jj))
345 {
346 // swap the two locations
347 Index j = ju(jj);
348 swap(ju(jj), ju(k));
349 jr(minrow) = jj; jr(j) = k;
350 swap(u(jj), u(k));
351 }
352 // Reset this location
353 jr(minrow) = -1;
354
355 // Start elimination
356 typename FactorType::InnerIterator ki_it(m_lu, minrow);
357 while (ki_it && ki_it.index() < minrow) ++ki_it;
358 eigen_internal_assert(ki_it && ki_it.col()==minrow);
359 Scalar fact = u(jj) / ki_it.value();
360
361 // drop too small elements
362 if(abs(fact) <= m_droptol)
363 {
364 jj++;
365 continue;
366 }
367
368 // linear combination of the current row ii and the row minrow
369 ++ki_it;
370 for (; ki_it; ++ki_it)
371 {
372 Scalar prod = fact * ki_it.value();
373 Index j = ki_it.index();
374 Index jpos = jr(j);
375 if (jpos == -1) // fill-in element
376 {
377 Index newpos;
378 if (j >= ii) // dealing with the upper part
379 {
380 newpos = ii + sizeu;
381 sizeu++;
382 eigen_internal_assert(sizeu<=n);
383 }
384 else // dealing with the lower part
385 {
386 newpos = sizel;
387 sizel++;
388 eigen_internal_assert(sizel<=ii);
389 }
390 ju(newpos) = j;
391 u(newpos) = -prod;
392 jr(j) = newpos;
393 }
394 else
395 u(jpos) -= prod;
396 }
397 // store the pivot element
398 u(len) = fact;
399 ju(len) = minrow;
400 ++len;
401
402 jj++;
403 } // end of the elimination on the row ii
404
405 // reset the upper part of the pointer jr to zero
406 for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
407
408 // 4 - partially sort and insert the elements in the m_lu matrix
409
410 // sort the L-part of the row
411 sizel = len;
412 len = (std::min)(sizel, nnzL);
413 typename Vector::SegmentReturnType ul(u.segment(0, sizel));
414 typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
415 internal::QuickSplit(ul, jul, len);
416
417 // store the largest m_fill elements of the L part
418 m_lu.startVec(ii);
419 for(Index k = 0; k < len; k++)
420 m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
421
422 // store the diagonal element
423 // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
424 if (u(ii) == Scalar(0))
425 u(ii) = sqrt(m_droptol) * rownorm;
426 m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
427
428 // sort the U-part of the row
429 // apply the dropping rule first
430 len = 0;
431 for(Index k = 1; k < sizeu; k++)
432 {
433 if(abs(u(ii+k)) > m_droptol * rownorm )
434 {
435 ++len;
436 u(ii + len) = u(ii + k);
437 ju(ii + len) = ju(ii + k);
438 }
439 }
440 sizeu = len + 1; // +1 to take into account the diagonal element
441 len = (std::min)(sizeu, nnzU);
442 typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
443 typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
444 internal::QuickSplit(uu, juu, len);
445
446 // store the largest elements of the U part
447 for(Index k = ii + 1; k < ii + len; k++)
448 m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
449 }
450
451 m_lu.finalize();
452 m_lu.makeCompressed();
453
454 m_factorizationIsOk = true;
455 m_isInitialized = m_factorizationIsOk;
456 m_info = Success;
457}
458
459namespace internal {
460
461template<typename _MatrixType, typename Rhs>
462struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
463 : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
464{
465 typedef IncompleteLUT<_MatrixType> Dec;
466 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
467
468 template<typename Dest> void evalTo(Dest& dst) const
469 {
470 dec()._solve(rhs(),dst);
471 }
472};
473
474} // end namespace internal
475
476} // end namespace Eigen
477
478#endif // EIGEN_INCOMPLETE_LUT_H
Definition Ordering.h:52
Definition Ordering.h:116
void setDroptol(const RealScalar &droptol)
Definition IncompleteLUT.h:205
IncompleteLUT< Scalar > & compute(const MatrixType &amat)
Definition IncompleteLUT.h:149
void setFillfactor(int fillfactor)
Definition IncompleteLUT.h:215
ComputationInfo info() const
Reports whether previous computation was successful.
Definition IncompleteLUT.h:131
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:129
Permutation matrix.
Definition PermutationMatrix.h:313
A versatible sparse matrix representation.
Definition SparseMatrix.h:87
ComputationInfo
Definition Constants.h:374
@ NumericalIssue
Definition Constants.h:378
@ Success
Definition Constants.h:376
Definition LDLT.h:18
Definition IncompleteLUT.h:180