Eigen  3.2.10
 
Loading...
Searching...
No Matches
Dot.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_DOT_H
11#define EIGEN_DOT_H
12
13namespace Eigen {
14
15namespace internal {
16
17// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
18// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
19// looking at the static assertions. Thus this is a trick to get better compile errors.
20template<typename T, typename U,
21// the NeedToTranspose condition here is taken straight from Assign.h
22 bool NeedToTranspose = T::IsVectorAtCompileTime
23 && U::IsVectorAtCompileTime
24 && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
25 | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
26 // revert to || as soon as not needed anymore.
27 (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
28>
29struct dot_nocheck
30{
31 typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
32 static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
33 {
34 return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
35 }
36};
37
38template<typename T, typename U>
39struct dot_nocheck<T, U, true>
40{
41 typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
42 static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
43 {
44 return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
45 }
46};
47
48} // end namespace internal
49
60template<typename Derived>
61template<typename OtherDerived>
62inline typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
63MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
64{
65 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
66 EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
67 EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
68 typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
69 EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
70
71 eigen_assert(size() == other.size());
72
73 return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
74}
75
76#ifdef EIGEN2_SUPPORT
86template<typename Derived>
87template<typename OtherDerived>
88typename internal::traits<Derived>::Scalar
90{
91 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
92 EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
93 EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
94 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
95 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
96
97 eigen_assert(size() == other.size());
98
99 return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
100}
101#endif
102
103
104//---------- implementation of L2 norm and related functions ----------
105
112template<typename Derived>
114{
115 return numext::real((*this).cwiseAbs2().sum());
116}
117
124template<typename Derived>
126{
127 using std::sqrt;
128 return sqrt(squaredNorm());
129}
130
137template<typename Derived>
138inline const typename MatrixBase<Derived>::PlainObject
140{
141 typedef typename internal::nested<Derived>::type Nested;
142 typedef typename internal::remove_reference<Nested>::type _Nested;
143 _Nested n(derived());
144 return n / n.norm();
145}
146
153template<typename Derived>
155{
156 *this /= norm();
157}
158
159//---------- implementation of other norms ----------
160
161namespace internal {
162
163template<typename Derived, int p>
164struct lpNorm_selector
165{
166 typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
167 static inline RealScalar run(const MatrixBase<Derived>& m)
168 {
169 using std::pow;
170 return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
171 }
172};
173
174template<typename Derived>
175struct lpNorm_selector<Derived, 1>
176{
177 static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
178 {
179 return m.cwiseAbs().sum();
180 }
181};
182
183template<typename Derived>
184struct lpNorm_selector<Derived, 2>
185{
186 static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
187 {
188 return m.norm();
189 }
190};
191
192template<typename Derived>
193struct lpNorm_selector<Derived, Infinity>
194{
195 static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
197 return m.cwiseAbs().maxCoeff();
198 }
199};
200
201} // end namespace internal
202
203/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
204 * of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
205 * norm, that is the maximum of the absolute values of the coefficients of *this.
206 *
207 * \sa norm()
208 */
209template<typename Derived>
210template<int p>
212MatrixBase<Derived>::lpNorm() const
213{
214 return internal::lpNorm_selector<Derived, p>::run(*this);
215}
216
217//---------- implementation of isOrthogonal / isUnitary ----------
218
225template<typename Derived>
226template<typename OtherDerived>
228(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
229{
230 typename internal::nested<Derived,2>::type nested(derived());
231 typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
232 return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
233}
234
246template<typename Derived>
247bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
248{
249 typename Derived::Nested nested(derived());
250 for(Index i = 0; i < cols(); ++i)
251 {
252 if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
253 return false;
254 for(Index j = 0; j < i; ++j)
255 if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
256 return false;
257 }
258 return true;
259}
260
261} // end namespace Eigen
262
263#endif // EIGEN_DOT_H
internal::traits< Derived >::Index Index
The type of indices.
Definition DenseBase.h:60
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
const PlainObject normalized() const
Definition Dot.h:139
bool isOrthogonal(const MatrixBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
Definition Dot.h:228
RealScalar squaredNorm() const
Definition Dot.h:113
RealScalar norm() const
Definition Dot.h:125
const CwiseUnaryOp< internal::scalar_abs_op< Scalar >, const Derived > cwiseAbs() const
Definition MatrixBase.h:22
internal::scalar_product_traits< typenameinternal::traits< Derived >::Scalar, typenameinternal::traits< OtherDerived >::Scalar >::ReturnType dot(const MatrixBase< OtherDerived > &other) const
Definition Dot.h:63
bool isUnitary(const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
Definition Dot.h:247
Matrix< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTime > PlainObject
The plain matrix type corresponding to this expression.
Definition MatrixBase.h:115
void normalize()
Definition Dot.h:154
Definition LDLT.h:18
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition NumTraits.h:89