Eigen  3.2.10
 
Loading...
Searching...
No Matches
ComplexSchur.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Claire Maurice
5// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_COMPLEX_SCHUR_H
13#define EIGEN_COMPLEX_SCHUR_H
14
15#include "./HessenbergDecomposition.h"
16
17namespace Eigen {
18
19namespace internal {
20template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
21}
22
51template<typename _MatrixType> class ComplexSchur
52{
53 public:
54 typedef _MatrixType MatrixType;
55 enum {
56 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
57 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
58 Options = MatrixType::Options,
59 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
60 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
61 };
62
64 typedef typename MatrixType::Scalar Scalar;
65 typedef typename NumTraits<Scalar>::Real RealScalar;
66 typedef typename MatrixType::Index Index;
67
74 typedef std::complex<RealScalar> ComplexScalar;
75
82
94 ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
95 : m_matT(size,size),
96 m_matU(size,size),
97 m_hess(size),
98 m_isInitialized(false),
99 m_matUisUptodate(false),
100 m_maxIters(-1)
101 {}
102
112 ComplexSchur(const MatrixType& matrix, bool computeU = true)
113 : m_matT(matrix.rows(),matrix.cols()),
114 m_matU(matrix.rows(),matrix.cols()),
115 m_hess(matrix.rows()),
116 m_isInitialized(false),
117 m_matUisUptodate(false),
118 m_maxIters(-1)
119 {
120 compute(matrix, computeU);
121 }
122
138 {
139 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
140 eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
141 return m_matU;
142 }
143
162 {
163 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
164 return m_matT;
165 }
166
189 ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
190
208 template<typename HessMatrixType, typename OrthMatrixType>
209 ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true);
210
216 {
217 eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
218 return m_info;
219 }
220
227 {
228 m_maxIters = maxIters;
229 return *this;
230 }
231
234 {
235 return m_maxIters;
236 }
237
243 static const int m_maxIterationsPerRow = 30;
244
245 protected:
246 ComplexMatrixType m_matT, m_matU;
248 ComputationInfo m_info;
249 bool m_isInitialized;
250 bool m_matUisUptodate;
251 Index m_maxIters;
252
253 private:
254 bool subdiagonalEntryIsNeglegible(Index i);
255 ComplexScalar computeShift(Index iu, Index iter);
256 void reduceToTriangularForm(bool computeU);
257 friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
258};
259
263template<typename MatrixType>
264inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
265{
266 RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
267 RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
268 if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
269 {
270 m_matT.coeffRef(i+1,i) = ComplexScalar(0);
271 return true;
272 }
273 return false;
274}
275
276
278template<typename MatrixType>
279typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
280{
281 using std::abs;
282 if (iter == 10 || iter == 20)
283 {
284 // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
285 return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
286 }
287
288 // compute the shift as one of the eigenvalues of t, the 2x2
289 // diagonal block on the bottom of the active submatrix
290 Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
291 RealScalar normt = t.cwiseAbs().sum();
292 t /= normt; // the normalization by sf is to avoid under/overflow
293
294 ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
295 ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
296 ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
297 ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
298 ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
299 ComplexScalar eival1 = (trace + disc) / RealScalar(2);
300 ComplexScalar eival2 = (trace - disc) / RealScalar(2);
301
302 if(numext::norm1(eival1) > numext::norm1(eival2))
303 eival2 = det / eival1;
304 else
305 eival1 = det / eival2;
306
307 // choose the eigenvalue closest to the bottom entry of the diagonal
308 if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
309 return normt * eival1;
310 else
311 return normt * eival2;
312}
313
314
315template<typename MatrixType>
316ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
317{
318 m_matUisUptodate = false;
319 eigen_assert(matrix.cols() == matrix.rows());
320
321 if(matrix.cols() == 1)
322 {
323 m_matT = matrix.template cast<ComplexScalar>();
324 if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
325 m_info = Success;
326 m_isInitialized = true;
327 m_matUisUptodate = computeU;
328 return *this;
329 }
330
331 internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
332 computeFromHessenberg(m_matT, m_matU, computeU);
333 return *this;
334}
335
336template<typename MatrixType>
337template<typename HessMatrixType, typename OrthMatrixType>
338ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
339{
340 m_matT = matrixH;
341 if(computeU)
342 m_matU = matrixQ;
343 reduceToTriangularForm(computeU);
344 return *this;
345}
346namespace internal {
347
348/* Reduce given matrix to Hessenberg form */
349template<typename MatrixType, bool IsComplex>
350struct complex_schur_reduce_to_hessenberg
351{
352 // this is the implementation for the case IsComplex = true
353 static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
354 {
355 _this.m_hess.compute(matrix);
356 _this.m_matT = _this.m_hess.matrixH();
357 if(computeU) _this.m_matU = _this.m_hess.matrixQ();
358 }
359};
360
361template<typename MatrixType>
362struct complex_schur_reduce_to_hessenberg<MatrixType, false>
363{
364 static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
365 {
366 typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
367
368 // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
369 _this.m_hess.compute(matrix);
370 _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
371 if(computeU)
372 {
373 // This may cause an allocation which seems to be avoidable
374 MatrixType Q = _this.m_hess.matrixQ();
375 _this.m_matU = Q.template cast<ComplexScalar>();
376 }
377 }
378};
379
380} // end namespace internal
381
382// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
383template<typename MatrixType>
385{
386 Index maxIters = m_maxIters;
387 if (maxIters == -1)
388 maxIters = m_maxIterationsPerRow * m_matT.rows();
389
390 // The matrix m_matT is divided in three parts.
391 // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
392 // Rows il,...,iu is the part we are working on (the active submatrix).
393 // Rows iu+1,...,end are already brought in triangular form.
394 Index iu = m_matT.cols() - 1;
395 Index il;
396 Index iter = 0; // number of iterations we are working on the (iu,iu) element
397 Index totalIter = 0; // number of iterations for whole matrix
398
399 while(true)
400 {
401 // find iu, the bottom row of the active submatrix
402 while(iu > 0)
403 {
404 if(!subdiagonalEntryIsNeglegible(iu-1)) break;
405 iter = 0;
406 --iu;
407 }
408
409 // if iu is zero then we are done; the whole matrix is triangularized
410 if(iu==0) break;
411
412 // if we spent too many iterations, we give up
413 iter++;
414 totalIter++;
415 if(totalIter > maxIters) break;
416
417 // find il, the top row of the active submatrix
418 il = iu-1;
419 while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
420 {
421 --il;
422 }
423
424 /* perform the QR step using Givens rotations. The first rotation
425 creates a bulge; the (il+2,il) element becomes nonzero. This
426 bulge is chased down to the bottom of the active submatrix. */
427
428 ComplexScalar shift = computeShift(iu, iter);
429 JacobiRotation<ComplexScalar> rot;
430 rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
431 m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
432 m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
433 if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
434
435 for(Index i=il+1 ; i<iu ; i++)
436 {
437 rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
438 m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
439 m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
440 m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
441 if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
442 }
443 }
444
445 if(totalIter <= maxIters)
446 m_info = Success;
447 else
448 m_info = NoConvergence;
449
450 m_isInitialized = true;
451 m_matUisUptodate = computeU;
452}
453
454} // end namespace Eigen
455
456#endif // EIGEN_COMPLEX_SCHUR_H
Performs a complex Schur decomposition of a real or complex square matrix.
Definition ComplexSchur.h:52
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > ComplexMatrixType
Type for the matrices in the Schur decomposition.
Definition ComplexSchur.h:81
std::complex< RealScalar > ComplexScalar
Complex scalar type for _MatrixType.
Definition ComplexSchur.h:74
const ComplexMatrixType & matrixU() const
Returns the unitary matrix in the Schur decomposition.
Definition ComplexSchur.h:137
ComplexSchur(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Definition ComplexSchur.h:94
MatrixType::Scalar Scalar
Scalar type for matrices of type _MatrixType.
Definition ComplexSchur.h:64
ComplexSchur(const MatrixType &matrix, bool computeU=true)
Constructor; computes Schur decomposition of given matrix.
Definition ComplexSchur.h:112
const ComplexMatrixType & matrixT() const
Returns the triangular matrix in the Schur decomposition.
Definition ComplexSchur.h:161
ComplexSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition ComplexSchur.h:226
Index getMaxIterations()
Returns the maximum number of iterations.
Definition ComplexSchur.h:233
ComputationInfo info() const
Reports whether previous computation was successful.
Definition ComplexSchur.h:215
ComplexSchur & compute(const MatrixType &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
Definition ComplexSchur.h:316
ComplexSchur & computeFromHessenberg(const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU=true)
Compute Schur decomposition from a given Hessenberg matrix.
static const int m_maxIterationsPerRow
Maximum number of iterations per row.
Definition ComplexSchur.h:243
Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation.
Definition HessenbergDecomposition.h:58
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:129
ComputationInfo
Definition Constants.h:374
@ NoConvergence
Definition Constants.h:380
@ Success
Definition Constants.h:376
Definition LDLT.h:18
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition NumTraits.h:89