Eigen  3.2.10
 
Loading...
Searching...
No Matches
ComplexEigenSolver.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Claire Maurice
5// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
7//
8// This Source Code Form is subject to the terms of the Mozilla
9// Public License v. 2.0. If a copy of the MPL was not distributed
10// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
13#define EIGEN_COMPLEX_EIGEN_SOLVER_H
14
15#include "./ComplexSchur.h"
16
17namespace Eigen {
18
45template<typename _MatrixType> class ComplexEigenSolver
46{
47 public:
48
50 typedef _MatrixType MatrixType;
51
52 enum {
53 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
54 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
55 Options = MatrixType::Options,
56 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
57 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
58 };
59
61 typedef typename MatrixType::Scalar Scalar;
62 typedef typename NumTraits<Scalar>::Real RealScalar;
63 typedef typename MatrixType::Index Index;
64
71 typedef std::complex<RealScalar> ComplexScalar;
72
78 typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
79
86
93 : m_eivec(),
94 m_eivalues(),
95 m_schur(),
96 m_isInitialized(false),
97 m_eigenvectorsOk(false),
98 m_matX()
99 {}
100
108 : m_eivec(size, size),
109 m_eivalues(size),
110 m_schur(size),
111 m_isInitialized(false),
112 m_eigenvectorsOk(false),
113 m_matX(size, size)
114 {}
115
125 ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
126 : m_eivec(matrix.rows(),matrix.cols()),
127 m_eivalues(matrix.cols()),
128 m_schur(matrix.rows()),
129 m_isInitialized(false),
130 m_eigenvectorsOk(false),
131 m_matX(matrix.rows(),matrix.cols())
132 {
133 compute(matrix, computeEigenvectors);
134 }
135
157 {
158 eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
159 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
160 return m_eivec;
161 }
162
182 {
183 eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
184 return m_eivalues;
185 }
186
211 ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
212
218 {
219 eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
220 return m_schur.info();
221 }
222
225 {
226 m_schur.setMaxIterations(maxIters);
227 return *this;
228 }
229
232 {
233 return m_schur.getMaxIterations();
234 }
235
236 protected:
237
238 static void check_template_parameters()
239 {
240 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
241 }
242
243 EigenvectorType m_eivec;
244 EigenvalueType m_eivalues;
245 ComplexSchur<MatrixType> m_schur;
246 bool m_isInitialized;
247 bool m_eigenvectorsOk;
248 EigenvectorType m_matX;
249
250 private:
251 void doComputeEigenvectors(const RealScalar& matrixnorm);
252 void sortEigenvalues(bool computeEigenvectors);
253};
254
255
256template<typename MatrixType>
258ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
259{
260 check_template_parameters();
261
262 // this code is inspired from Jampack
263 eigen_assert(matrix.cols() == matrix.rows());
264
265 // Do a complex Schur decomposition, A = U T U^*
266 // The eigenvalues are on the diagonal of T.
267 m_schur.compute(matrix, computeEigenvectors);
268
269 if(m_schur.info() == Success)
270 {
271 m_eivalues = m_schur.matrixT().diagonal();
272 if(computeEigenvectors)
273 doComputeEigenvectors(matrix.norm());
274 sortEigenvalues(computeEigenvectors);
275 }
276
277 m_isInitialized = true;
278 m_eigenvectorsOk = computeEigenvectors;
279 return *this;
280}
281
282
283template<typename MatrixType>
284void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(const RealScalar& matrixnorm)
285{
286 const Index n = m_eivalues.size();
287
288 // Compute X such that T = X D X^(-1), where D is the diagonal of T.
289 // The matrix X is unit triangular.
290 m_matX = EigenvectorType::Zero(n, n);
291 for(Index k=n-1 ; k>=0 ; k--)
292 {
293 m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
294 // Compute X(i,k) using the (i,k) entry of the equation X T = D X
295 for(Index i=k-1 ; i>=0 ; i--)
296 {
297 m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
298 if(k-i-1>0)
299 m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
300 ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
301 if(z==ComplexScalar(0))
302 {
303 // If the i-th and k-th eigenvalue are equal, then z equals 0.
304 // Use a small value instead, to prevent division by zero.
305 numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
306 }
307 m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
308 }
309 }
310
311 // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
312 m_eivec.noalias() = m_schur.matrixU() * m_matX;
313 // .. and normalize the eigenvectors
314 for(Index k=0 ; k<n ; k++)
315 {
316 m_eivec.col(k).normalize();
317 }
318}
319
320
321template<typename MatrixType>
322void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
323{
324 const Index n = m_eivalues.size();
325 for (Index i=0; i<n; i++)
326 {
327 Index k;
328 m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
329 if (k != 0)
330 {
331 k += i;
332 std::swap(m_eivalues[k],m_eivalues[i]);
333 if(computeEigenvectors)
334 m_eivec.col(i).swap(m_eivec.col(k));
335 }
336 }
337}
338
339} // end namespace Eigen
340
341#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
Computes eigenvalues and eigenvectors of general complex matrices.
Definition ComplexEigenSolver.h:46
std::complex< RealScalar > ComplexScalar
Complex scalar type for MatrixType.
Definition ComplexEigenSolver.h:71
Matrix< ComplexScalar, ColsAtCompileTime, 1, Options &(~RowMajor), MaxColsAtCompileTime, 1 > EigenvalueType
Type for vector of eigenvalues as returned by eigenvalues().
Definition ComplexEigenSolver.h:78
ComplexEigenSolver(Index size)
Default Constructor with memory preallocation.
Definition ComplexEigenSolver.h:107
MatrixType::Scalar Scalar
Scalar type for matrices of type MatrixType.
Definition ComplexEigenSolver.h:61
ComplexEigenSolver & compute(const MatrixType &matrix, bool computeEigenvectors=true)
Computes eigendecomposition of given matrix.
Definition ComplexEigenSolver.h:258
ComplexEigenSolver()
Default constructor.
Definition ComplexEigenSolver.h:92
const EigenvectorType & eigenvectors() const
Returns the eigenvectors of given matrix.
Definition ComplexEigenSolver.h:156
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > EigenvectorType
Type for matrix of eigenvectors as returned by eigenvectors().
Definition ComplexEigenSolver.h:85
Index getMaxIterations()
Returns the maximum number of iterations.
Definition ComplexEigenSolver.h:231
ComputationInfo info() const
Reports whether previous computation was successful.
Definition ComplexEigenSolver.h:217
ComplexEigenSolver & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition ComplexEigenSolver.h:224
_MatrixType MatrixType
Synonym for the template parameter _MatrixType.
Definition ComplexEigenSolver.h:50
ComplexEigenSolver(const MatrixType &matrix, bool computeEigenvectors=true)
Constructor; computes eigendecomposition of given matrix.
Definition ComplexEigenSolver.h:125
const EigenvalueType & eigenvalues() const
Returns the eigenvalues of given matrix.
Definition ComplexEigenSolver.h:181
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:129
ComputationInfo
Definition Constants.h:374
@ Success
Definition Constants.h:376
@ RowMajor
Definition Constants.h:266